References
-
Y. A. Noh & K. C. Kim. (2017). Transparent Hydrophobic Anti-Reflection Coating with
$SiO_2$ /$TiO_2$ Thin Layers. Journal of the Korea Academia. Industrial cooperation Society, 18(3), 1-6. https://doi.org/10.5762/KAIS.2017.18.1.1 -
H. J. Hong, M. C. Heo, S. H. Hahn, E. J. Kim, C. W. Lee & J. H. Joo. (2006). Properties of Low. Temperature Sol-Gel
$TiO_2$ Thin Films with Catalyst Content. Hankook Kwanghak Hoeji, 17(3), 296-302. https://doi.org/10.3807/KJOP.2006.17.3.296 - X. Chen & S. S. Mao. (2007). Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and Applications, Chemical Reviews, 107(7), 2891-2959. DOI : 10.1021/cr0500535
-
A. R. Park, S. H. Kim, D. G. Kim, H. B. Gu & H. C. Ki. (2012). Synthesis of
$TiO_2$ by Sol-Gel Method & Electrochemical Properties of DSSCs with Controlling pH. Journal of the Korean institute of electronic material engineers, 25(8), 620-625. DOI : 10.4313/jkem.2012.25.8.620 -
B. O'Regan & M. Gratzel. (1991). A low. cost, high. efficiency solar cells based on dye-sensitized colloidal
$TiO_2$ films. Nature, 353, 737-740. DOI : 10.1038/353737a0 -
F. Huang, D. Chen, X. L. Zhang, R. A. Caruso & Y. B. Cheng. (2010). Dual-Function Scattering Layer of Submicrometer-Sized Mesoporous
$TiO_2$ Beads for High. Efficiency Dye-Sensitized Soalr Cells. Advanced Functional Materials, 20, 1301-1305. DOI : 10.1002/adfm.200902218 -
D. Chen, F. Huang, Y. B. Cheng & R. A. Caruso. (2009). Mesoporous Anatase
$TiO_2$ Beads with High Surface Area & Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Soalr Cells. Advanced Materials, 21, 2206-2210. DOI : 10.1002/adma.200802603 -
Z. S. Wang, H. Kawauchi, T. Kashima & H. Arakawa. (2004). Significant influence of
$TiO_2$ photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews, 248, 1381-1389. DOI : 10.1016/j.ccr.2004.03.006 -
S. Hore, C. Vetter, C. Prahl, M. Niggemann & R. Kern. (2005). Scattering spherical voids in nanocrystalline
$TiO_2$ -enhancement of efficiency in dye-sensitized solar cells. Chemical Communications, 15, 2011-2013. DOI : 10.1039/b418658n - J. Ferber & J. Luther. (1998). Computer simulation of light scattering & absorption in dye-sensitized solar cells. Solar Energy Materials & Solar Cells, 54, 265-275. DOI : 10.1016/s0927-0248(98)00078-6
-
A. S. Barnard & L. A. Curtiss. (2005). Prediction of
$TiO_2$ Nanoparticle Phase & Shape Transitions Controlled by Surface Chemistry. Nano Letters, 5(7), 1261-1266. DOI : 10.1021/nl050355m -
H. Meng, B. Wang, S. Liu, R. Jiang & H. Long. (2013). Hydrothermal preparation, characterization & photocatalytic activity of
$TiO_2$ /Fe-$TiO_2$ composite catalysts. Ceramics International, 39, 5785-5793. DOI : 10.1016/j.ceramint.2012.12.098 -
J. S. Lee, K. H. You & C. B. Park. (2012). Highly Photoactive, Low Bandgap
$TiO_2$ Nanoparticles Wrapped by Graphene. Advanced Materials, 24(8), 1133-1137. DOI : 10.1002/adma.201290038 -
H. H. Jung, J. H. Kim, J. Hwang, T. Y. Lim & D. G. Choi. (2010) Fabrication of super hydrophilic
$TiO_2$ thin film by a liquid phase deposition. Journal of the Korean Crystal Growth & Crystal Technology, 20(5), 227-231. DOI : 10.6111/jkcgct.2010.20.5.227 -
J. H. Kim, H. H. Jung, J. Hwang, Y. Cho & T. Y. Lim. (2010). Properties of
$TiO_2$ thin films fabricated with surfactant by a sol-gel method. Journal of the Korean Crystal Growth & Crystal Technology, 20(6), 267-271. DOI : 10.6111/jkcgct.2010.20.6.267