DOI QR코드

DOI QR Code

A simple method to determine the surface energy of graphite

  • Lee, Jinseo (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Bumjae (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 투고 : 2016.09.02
  • 심사 : 2016.10.04
  • 발행 : 2017.01.31

초록

키워드

참고문헌

  1. Kelly BT. Physics of Graphite, Applied Science Publisher, London (1981).
  2. Shi D, Li D, Gao G, Wang L. Relation between surface tension and graphite shape in cast iron. Mater Trans, 49, 2163 (2008). https://doi.org/10.2320/matertrans.mrp2008165.
  3. Wang S, Zhang Y, Abidi N, Cabrales L. Wettability and surface free energy of graphene films. Langmuir, 25, 11078 (2009). https://doi.org/10.1021/la901402f.
  4. Brodie BC. On the atomic weight of graphite. Phil Trans R Soc Lond, 149, 249 (1859). https://doi.org/10.1098/rstl.1859.0013.
  5. Staudenmaier L. Verfahren zur Darstellung der Graphitsaure. Ber Dtsch Chem Ges, 31, 1481 (1898). https://doi.org/10.1002/cber.18980310237.
  6. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). https://doi.org/10.1021/ja01539a017.
  7. Gillespie BE, Smith MJ, Wyatt PAH. Surface tension measurements in solvent sulphuric acid. J Chem Soc A Inorg Phys Theor, 304 (1969). https://doi.org/10.1039/j19690000304.
  8. Prabhu KN, Fernandes P, Kumar G. Effect of substrate surface roughness on wetting behaviour of vegetable oils. Mater Des, 30, 297 (2009). https://doi.org/10.1016/j.matdes.2008.04.067.
  9. Zhao X, Blunt MJ, Yao J. Pore-scale modeling: effects of wettability on waterflood oil recovery. J Pet Sci Eng, 71, 169 (2010). http://dx.doi.org/10.1016/j.petrol.2010.01.011.
  10. Wang YQ, Yang HF, Hang QG, Fang L, Ge SR. Tribological and lubrication properties of sandblast-textured surfaces with varied roughness. Adv Mater Res, 154-155, 1019 (2010). https://doi.org/10.4028/www.scientific.net/amr.154-155.1019.
  11. Sakai M, Yanagisawa T, Nakajima A, Kameshima Y, Okada K. Effect of surface structure on the sustainability of an air layer on superhydrophobic coatings in a water−ethanol mixture. Langmuir, 25, 13 (2009). https://doi.org/10.1021/la802763h.
  12. Son Y, Kim C, Yang DH, Ahn DJ. Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low Weber and Reynolds numbers. Langmuir, 24, 2900 (2008). https://doi.org/10.1021/la702504v.
  13. Perelaer J, Hendriks CE, de Laat AWM, Schubert US. One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology, 20, 165303 (2009). https://doi.org/10.1088/0957-4484/20/16/165303.
  14. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cançado LG, Jorio A, Saito R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys, 9, 1276 (2007). https://doi.org/10.1039/B613962K.
  15. Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun, 143, 47 (2007). https://doi.org/10.1016/j.ssc.2007.03.052.
  16. Cancado LG, Jorio A, Martins Ferreira EH, Stavale F, Achete CA, Capaz RB, Moutinho MVO, Lombardo A, Kulmala TS, Ferrari AC. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett, 11, 3190 (2011). https://doi.org/10.1021/nl201432g.
  17. Niwase K, Tanabe T. Defect structure and amorphization of graphite irradiated by D+ and He+. Mater Trans JIM, 34, 1111 (1993). https://doi.org/10.2320/matertrans1989.34.1111.
  18. Crespo E, Luque FJ, Barrenechea JF, Rodas M. Influence of grinding on graphite crystallinity from experimental and natural data: implications for graphite thermometry and sample preparation. Mineral Mag, 70, 697 (2006). https://doi.org/10.1180/0026461067060358.
  19. Hussain R, Qadeer R, Ahmad M, Saleem M. X-ray diffraction study of heat-treated graphitized and ungraphitized carbon. Turk J Chem, 24, 177 (2000).
  20. Cross CB, Ecker DR, Stein OL. Artificial graphite process. US Patent 3,116,975 (1964).
  21. Owens-Wendt Surface Energy Calculation. Available from: http://www.firsttenangstroms.com/pdfdocs/OwensWendtSurfaceEnergy-Calculation.pdf.
  22. Hejda F, Solar P, Kousal J. Surface free energy determination by contact angle measurements: a comparison of various approaches. Part III. physics. Proceedings of the 19th Annual Conference of Doctoral Students, Prague, 25 (2010).

피인용 문헌

  1. Understanding Interfacial-Energy-Driven Dry Powder Mixing for Solvent-Free Additive Manufacturing of Li-Ion Battery Electrodes vol.4, pp.21, 2017, https://doi.org/10.1002/admi.201700570
  2. Simulation of Micro/Nanopowder Mixing Characteristics for Dry Spray Additive Manufacturing of Li-Ion Battery Electrodes vol.5, pp.4, 2017, https://doi.org/10.1115/1.4037769