DOI QR코드

DOI QR Code

Green synthesis of reduced graphene oxide using ball milling

  • Calderon-Ayala, G. (Departamento de Investigacion en Fisica, Universidad de Sonora) ;
  • Cortez-Valadez, M. (CONACYT-Departamento de Investigacion en Fisica, Universidad de Sonora) ;
  • Mani-Gonzalez, P.G. (Instituto de Ingenieria y Tecnologia, Departamento de Fisica y Matematicas, Universidad Autonoma de Ciudad Juarez) ;
  • Britto Hurtado, R. (Departamento de Investigacion en Fisica, Universidad de Sonora) ;
  • Contreras-Rascon, J.I. (Departamento de Fisica, Universidad de Sonora) ;
  • Carrillo-Torres, R.C. (Departamento de Fisica, Universidad de Sonora) ;
  • Zayas, Ma. E. (Departamento de Investigacion en Fisica, Universidad de Sonora) ;
  • Castillo, S.J. (Departamento de Investigacion en Fisica, Universidad de Sonora) ;
  • Hernandez-Martinez, A.R. (Centro de Fisica Aplicada y Tecnologia Avanzada (CFATA), Universidad Nacional Autonoma de Mexico Campus Juriquilla) ;
  • Flores-Acosta, M. (Departamento de Investigacion en Fisica, Universidad de Sonora)
  • Received : 2016.04.13
  • Accepted : 2016.10.25
  • Published : 2017.01.31

Abstract

Keywords

References

  1. Huang J, Zhang L, Chen B, Ji N, Chen F, Zhang Y, Zhang Z. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Nanoscale, 2, 2733 (2010). https://doi.org/10.1039/C0NR00473A.
  2. Dong X, Xing G, Chan-Park MB, Shi W, Xiao N, Wang J, Yan Q, Sum TC, Huang W, Chen P. The formation of a carbon nanotube- graphene oxide core-shell structure and its possible applications. Carbon, 49, 5071 (2011). https://doi.org/10.1016/j.carbon.2011.07.025.
  3. Mao S, Yu K, Cui S, Bo Z, Lu G, Chen J. A new reducing agent to prepare single-layer, high-quality reduced graphene oxide for device applications. Nanoscale, 3, 2849 (2011). https://doi.org/10.1039/C1NR10270B.
  4. Li B, Cao H, Yin G, Lu Y, Yin J. $Cu_2$O@reduced graphene oxide composite for removal of contaminants from water and supercapacitors. J Mater Chem, 21, 10645 (2011). https://doi.org/10.1039/C1JM12135A.
  5. Hummers WS Jr, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). https://doi.org/10.1021/ja01539a017.
  6. Brodie BC. Sur le poids atomique du graphite. Ann Chim Phys, 59, 466 (1860).
  7. Staudenmaier L. Verfahren zur Darstellung der Graphitsäure. Ber Deut Chem Ges, 31, 1481 (1898). https://doi.org/10.1002/cber.18980310237.
  8. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev, 39, 228 (2010). https://doi.org/10.1039/B917103G.
  9. Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat Nanotechnol, 4, 217 (2009). https://doi.org/10.1038/nnano.2009.58.
  10. Chettri P, Vendamani VS, Tripathi A, Pathak AP, Tiwari A. Self assembly of functionalised graphene nanostructures by one step reduction of graphene oxide using aqueous extract of Artemisia vulgaris. Appl Surf Sci, 362, 221 (2016). https://doi.org/10.1016/j.apsusc.2015.11.231.
  11. Wang R, Yao Y, Shen M, Wang X. Green synthesis of Au@Ag nanostructures through a seed-mediated method and their application in SERS. Colloids Surf A Physicochem Eng Aspects, 492, 263 (2016). https://doi.org/10.1016/j.colsurfa.2015.11.076.
  12. Sathishkumar G, Pradeep KJ, Vignesh V, Rajkuberan C, Jeyaraj M, Selvakumar M, Rakhi J, Sivaramakrishnan S. Cannonball fruit (Couroupita guianensis, Aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity. J Mol Liq, 215, 229 (2016). https://doi.org/10.1016/j.molliq.2015.12.043.
  13. Navyatha B, Kumar R, Nara S. A facile method for synthesis of gold nanotubes and their toxicity assessment. J Environ Chem Eng, 4, 924 (2016). https://doi.org/10.1016/j.jece.2015.12.033.
  14. Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A. Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater, 9, 035012 (2008). https://doi.org/10.1088/1468-6996/9/3/035012.
  15. Tesoriere L, Butera D, Pintaudi AM, Allegra M, Livrea MA. Supplementation with cactus pear (Opuntia ficus-indica) fruit decreases oxidative stress in healthy humans: a comparative study with vitamin C1,2,3. Am J Clin Nutr, 80, 391 (2004). https://doi.org/10.1093/ajcn/80.2.391
  16. Niilisk A, Kozlova J, Alles H, Aarik J, Sammelselg V. Raman characterization of stacking in multi-layer graphene grown on Ni. Carbon, 98, 658 (2016). https://doi.org/10.1016/j.carbon.2015.11.050.
  17. Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B, 61, 14095 (2000). https://doi.org/10.1103/PhysRevB.61.14095.
  18. Pocsik I, Hundhausen M, Koos M, Ley L. Origin of the D peak in the Raman spectrum of microcrystalline graphite. J Non-Cryst Solids, 227-230, 1083 (1998). https://doi.org/10.1016/S0022-3093(98)00349-4.
  19. Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun, 143, 47 (2007). https://doi.org/10.1016/j.ssc.2007.03.052.
  20. Seredych M, Idrobo JC, Bandosz TJ. Effect of confined space reduction of graphite oxide followed by sulfur doping on oxygen reduction reaction in neutral electrolyte. J Mater Chem A, 1, 7059 (2013). https://doi.org/10.1039/C3TA10995J.
  21. Takashiro JI, Kudo Y, Hao SJ, Takai K, Futaba DN, Enoki T, Kiguchi M. Preferential oxidation-induced etching of zigzag edges in nanographene. Phys Chem Chem Phys, 16, 21363 (2014). https://doi.org/10.1039/C4CP02678K.
  22. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS. Hydrazine-reduction of graphite- and graphene oxide. Carbon, 49, 3019 (2011). https://doi.org/10.1016/j.carbon.2011.02.071.
  23. Cui P, Lee J, Hwang E, Lee H. One-pot reduction of graphene oxide at subzero temperatures. Chem Commun 47, 12370 (2011). https://doi.org/10.1039/C1CC15569E.
  24. Fan J, Wang K, Wei T, Yan J, Song L, Shao B. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon, 48, 1686 (2010). https://doi.org/10.1016/j.carbon.2009.12.063.
  25. Ding YH, Zhang P, Zhuo Q, Ren HM, Yang ZM, Jiang Y. A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation. Nanotechnology, 22, 215601 (2011). https://doi.org/10.1088/0957-4484/22/21/215601.
  26. Pendolino F, Capurso G, Maddalena A, Russo SL. The structural change of graphene oxide in a methanol dispersion. RSC Adv, 4, 32914 (2014). https://doi.org/10.1039/C4RA04450A.
  27. Alvarez RAB, Cortez-Valadez M, Britto-Hurtado R, Bueno LON, Flores-Lopez NS, Hernandez-Martinez AR, Gamez-Corrales R, Vargas-Ortiz R, Bocarando-Chacon JG, Arizpe-Chavez H, Flores-Acosta M. Raman scattering and optical properties of lithium nanoparticles obtained by green synthesis. Vib Spectrosc, 77, 5 (2015). https://doi.org/10.1016/j.vibspec.2015.02.001.
  28. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2, 463 (2008). https://doi.org/10.1021/nn700375n.
  29. Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett, 7, 3499 (2007). https://doi.org/10.1021/nl072090c.
  30. Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE. Reduced graphene oxide molecular sensors. Nano Lett, 7, 3137 (2008). https://doi.org/10.1021/nl8013007.

Cited by

  1. Graphite to Graphene: Green Synthesis Using Opuntia ficus-indica vol.48, pp.3, 2019, https://doi.org/10.1007/s11664-018-06918-5