참고문헌
-
Amato, M. and Catalano, P. (2000), "Non Linear
${\kappa}-{\varepsilon}$ turbulence modeling for industrial applications", ICAS 2000 Congress, Harrogate, UK. - Amato, M., Paparone, L., Catalano, P. and Puoti, V. (1999), "Zen flow solver, Zonal Euler Navier-stokes flow solver user guide", Technical Report, CIRA, Centro Italiano Ricerche Aerospaziali.
- Anderson, J.D. Jr (2011), Fundamentals of aerodynamics. McGraw-Hill Higher Education, 3rd edition.
- Barbarino, S., Bilgen, O., Ajaj, R.M., Friswell, M.I. and Inman, D.J. (2011), "A review of morphing aircraft", J. Intell. Mater. Syst. Struct., 22, 823-877. https://doi.org/10.1177/1045389X11414084
-
Catalano, P. and Amato, M. (2001), "Assessment of
${\kappa}-{\omega}$ turbulence modeling in the CIRA flow solver ZEN", ECCOMAS 2001 Conference, Swansea, Wales. - Ferziger, J. H. and Peric, M. (1996), Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin & Heidelberg.
- Jameson, A. (1991), "Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings", AIAA Paper, AIAA 10th Computational Fluid Dynamics Conference, Honolulu, HI, June.
-
Kok, J. (2000), "Resolving the dependence on free-stream values for the
${\kappa}-{\omega}$ turbulence model", AIAA J., 38(7), 1292-1295. https://doi.org/10.2514/2.1101 - Kuhn, T. (2010), "Aerodynamic optimization of a two-dimensional two-element high lift airfoil with a smart droop nose device", 1st EASN Association Workshop on Aerostructures, Paris, France
- Mark, D. (2007), A User's Guide to MSES 3.05, MIT Department of Aeronautics and Astronautics, July.
- Marongiu, C., Catalano, P., Amato, M. and Iaccarino, G. (2004), "U-ZEN: a computational tool solving U-RANS equations for industrial unsteady applications", 34th AIAA Fluid Dynamics Conference, Portland (Or), AIAA Paper 2004-2345.
- Olympio, K.R. and Gandhi, F. (2010a), "Flexible skins for morphing aircraft using cellular honeycomb cores", J. Intel. Mater. Syst. Struct., 21, 1719-1735. https://doi.org/10.1177/1045389X09350331
- Olympio, K.R. and Gandhi, F. (2010b), "Zero poisson's ratio cellular honeycombs for flex skins undergoing one-dimensional morphing", J. Intel. Mater. Syst. Struct., 21, 1737-1753. https://doi.org/10.1177/1045389X09355664
- Quagliarella, D. (2003), "Airfoil design using Navier-Stokes equations and an asymmetric multi-objective genetic algorithm", Evolutionary Methods for Design, Optimization and Control Applications to Industrial and Societal Problems, International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain.
- Secanell, M., Suleman, A. and Gamboa, P. (2006), "Design of a morphing airfoil using aerodynamic shape optimization", AIAA J., 44(7), 1550-1562. https://doi.org/10.2514/1.18109
- Shili, L., Wenjie, G. and Shujun, L. (2008), "Optimal design of compliant trailing edge for shape changing", Chin. J. Aeronaut., 21, 187-192. https://doi.org/10.1016/S1000-9361(08)60024-2
- Thill, C., Etches, J., Bond, I., Potter, K. and Weaver, P. (2008), "Morphing skins", Aeronaut. J., 112, 117-139. https://doi.org/10.1017/S0001924000002062
- Vicini, A. and Quagliarella, D. (1997), "Inverse and direct airfoil design using a multi-objective genetic algorithm", AIAA J., 35(9), 1499-1505. https://doi.org/10.2514/2.274
- Wilcox, D.C. (1994), Turbulence Modeling for CFD, DCW Industries Inc., La Canada, Los Angeles, California.
피인용 문헌
- New Concept for Aircraft Morphing Wing Skin: Design, Modeling, and Analysis vol.57, pp.5, 2017, https://doi.org/10.2514/1.j058102
- Design Criteria for Variable Camber Compliant Wing Aircraft Morphing Wing Skin vol.58, pp.2, 2020, https://doi.org/10.2514/1.j058002