DOI QR코드

DOI QR Code

Synthesis of ArOTiCl3 complexes and their application for ethylene polymerization and copolymerization

  • Wang, Jianwei (School of Materical Science and Molecular Engineering, East China University of Science and Technology) ;
  • Ren, Yingchun (School of Chemistry and Molecular Engineering, East China University of Science and Technology) ;
  • Xu, Sheng (School of Materical Science and Molecular Engineering, East China University of Science and Technology) ;
  • Mi, Puke (School of Materical Science and Molecular Engineering, East China University of Science and Technology)
  • Received : 2017.11.20
  • Accepted : 2018.02.14
  • Published : 2017.09.25

Abstract

In this article, novel olefin polymerization catalyst with lower cost and simple synthetic process were developed, $ArOTiCl_3$ complexes [$(2-OMeC_6H_4O)TiCl_3(C1)$, $(2,4-Me_2C_6H_3O)TiCl_3(C2)$, $TiCl_3(1,4-OC_6H_4O)TiCl_3(C3)$, $TiCl_3(1,4-OC_6H_2O-Me_2-2,5)$ $TiCl_3(C4)$] and corresponding $(ArO)_2TiCl_2$ complexes [$TiCl_2(OC_6H_4-OMe-2)_2(C5)$ and $TiCl_2(OC_6H_3-Me_2-2,6)_2(C6)$] have been synthesized by the reaction of $TiCl_4$ with phenol, all these complexes were well characterized with $^1H$ NMR, $^{13}C$ NMR, MASS and EA. When combined with methylaluminoxane (MAO), the $ArOTiCl_3/MAO$ system shows high activity for ethylene copolymerization with 1-octene and copolymer was obtained with broaden molecular weight distribution (MWD). The $^{13}C$ NMR result of polymer indicates that the 1-octene incorporation in polymer reached up to 8.29 mol%. The effects of polymerization temperature, concentration of polymerization monomer and polymerization time on the catalytic activity have been investigated.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Alan, W.D., Rose, A.K., Michael, F.L. and Reginald, J.N. (1986), "Bulky metal aryloxides, arylamides, and sulphur and phosphorus analogues. Part 1. Synthetic and chemical studies of titanium and zirconium aryloxides", J. Chem. Soc., Dalton Trans., 3, 489-498.
  2. Baier, M.C., Zuideveld, M.A. and Mecking, S. (2014), "Post-Metallocenes in the Industrial Production of Polyolefins", Angew. Chem. Int. Ed., 53(37), 9722-9744. https://doi.org/10.1002/anie.201400799
  3. Chum, P.S. and Swogger, K.W. (2008), "Olefin polymer technologies - History and recent progress at The Dow Chemical Company", Prog. Polym. Sci., 33(8), 797-819. https://doi.org/10.1016/j.progpolymsci.2008.05.003
  4. Delferro, M. and Marks, T.J. (2011), "Multinuclear olefin polymerization catalysts", Chem. Rev., 111(3), 2450-2485. https://doi.org/10.1021/cr1003634
  5. Dommanget, C., D'Agosto, F. and Monteil, V. (2014), "Polymerization of Ethylene through Reversible Addition-Fragmentation Chain Transfer (RAFT)", Angew. Chem. Int. Ed., 53(26), 6683-6686. https://doi.org/10.1002/anie.201403491
  6. Fu, T., Cheng, R.H., He, X.L., Liu, Z., Tian, Z., Liu, Z. and Liu, B.P. (2017), "Modification of the ($SiO_2/MgO/MgCl_2$).TiClx Ziegler-Natta polyethylene catalysts using the third metal elements", Chin. J. Polym. Sci., 35(6), 739-751. https://doi.org/10.1007/s10118-017-1939-0
  7. Guo, S., Fan, H., Bu, Zh.Y., Li, B.-G. and Zhu, S.-P. (2015), "High Temperature High Pressure Tandem Polymerization of Ethylene for Synthesis of Ethylene-1-Hexene Copolymers from Single Reactor with SNS-Cr and CGC-Ti Catalysts", Macromol. React. Eng., 9(1), 32-39. https://doi.org/10.1002/mren.201400027
  8. Kong, Y., Yi, J.J., Dou, X.L., Liu, W.J., Huang, Q.G., Gao, K.J. and Yang, W.T. (2010), "With different structure ligands heterogeneous Zieglere-Natta catalysts for the preparation of copolymer of ethylene and 1-octene with high comonomer incorporation", Polymer, 51(17), 3859-3866. https://doi.org/10.1016/j.polymer.2010.06.032
  9. Latesky, S.L., Keddington, J., McMullen, A.K., Rothwell, I.P. and Huffman, J.C. (1985), "Synthesis, structure, spectroscopic properties, and electrochemical behavior of group 4 metal derivatives containing bulky aryloxide ligands", Inorg. Chem., 24(7), 995-1001. https://doi.org/10.1021/ic00201a007
  10. Lee, S., Park, S.S., Kim, J.G., Kim, Ch.S. and Lee, B.Y. (2017), "Preparation of "Constrained Geometry" Titanium Complexes of [1, 2] Azasilinane Framework for Ethylene/1-Octene Copolymerization", Molecules, 22(2), 258. DOI: 10.3390/molecules 22020258
  11. Liu, P.W., Liu, W.F., Wang, W.-J., Li, B.-G. and Zhu, Sh.P. (2017), "A Comprehensive Review on Controlled Synthesis of Long-Chain Branched Polyolefins: Part 3, Characterization of Long-Chain Branched Polymers", Macromol. React. Eng., 11(1), 1600012, 20 p. https://doi.org/10.1002/mren.201600012
  12. Makio, H., Terao, H., Iwashita, A. and Fujita, T. (2011), "FI Catalysts for Olefin Polymerization-A Comprehensive Treatment", Chem. Rev., 111(3), 2363-2449. https://doi.org/10.1021/cr100294r
  13. Mi, P.K., Xu, S., Qu, L.D., Zhang, D.S., Chen, Q. and Wang, S.H. (2011), "Synthesis of double silylene‐bridged binuclear metallocenes and their cooperation effect during ethylene polymerization and ethylene/1‐hexene copolymerization", J. Appl. Polym. Sci., 121(1), 21-26. https://doi.org/10.1002/app.33574
  14. Nielson, A.J., Schwerdtfeger, P. and Waters, J.M. (2000), "Trichloro monophenoxide complexes of titanium(IV)", J. Chem. Soc., Dalton Trans., 4, 529-537.
  15. Nomura, K., Komatus, T. and Imanish, Y. (2000), "Ligand effect in olefin polymerization catalyzed by (cyclopentaienyl) (aryloxy) titanium (IV) comlexes, $CpTiCl_2(OAr)-MAO$ system.: Ethylene/1-hexene copolymerization by (1,3-$tBuC_5H_3$)$TiCl_2$(O-2,6-$iPr_2C_6H_3$) -MAO catalyst system", J. Mol. Catal., A: Chem., 159(1), 127-137. https://doi.org/10.1016/S1381-1169(00)00181-3
  16. Ochedzan-Siodlak, W. and Bihun, A. (2017), "Copolymerization of ethylene with norbornene or 1-octene using supported ionic liquid systems", Polym. Bull., 74(7), 2799-2817.
  17. Paivi, A. and Jukka, S. (1994), "Polymerization of a styrene and ethylene mixture with a trichloro (2, 6-di-tert-butylphenoxy) titanium/methylaluminoxane catalyst system", Macromolecules, 27(12), 3136-3138. https://doi.org/10.1021/ma00090a004
  18. Prashant, S., Umare1, A.J., Tiwari, R.A., Tembe, G. and Trivedi, B. (2007), "Synthesis of ultra-low-molecular-weight polyethylene wax using a bulky Ti (IV) aryloxide-alkyl aluminum catalytic system", Appl. Organometal. Chem., 21(8), 652-660. https://doi.org/10.1002/aoc.1233
  19. Rimkus, A.M. and Alt, H.G. (2017), "Dissymmetric ansa zirconocene complexes with di-and trisubstituted indenyl ligands as catalysts for homogeneous ethylene homo- and ethylene/1-hexene copolymerization reactions", Polyhedron, 126, 72-82. https://doi.org/10.1016/j.poly.2017.01.021
  20. Seger, M.R. and Gary, E.M. (2004), "Quantitative $^{13}C$ NMR analysis of sequence distributions in poly(ethylene-co-1-hexene)", Anal. Chem., 76(19), 5734-5747. https://doi.org/10.1021/ac040104i
  21. Severn, J.R. and Chadwick, J.C. (2013), "Immobilisation of homogeneous olefin polymerization catalysts. Factors influencing activity and stability", Dalton Trans., 42(25), 8979-8987. https://doi.org/10.1039/c3dt33098b
  22. Sturzel, M., Mihan, S. and Mulhaupt, R. (2016), "From multisite polymerization catalysis to sustainable materials and all-polyolefin composites", Chem. Rev., 116(3), 1398-1433. https://doi.org/10.1021/acs.chemrev.5b00310
  23. Sun, Q.Q., Wang, L.S., Cheng, R.H., Liu, Z., He, X.L., Zhao, N. and Liu, B.P. (2017), "A Novel $SiO_2$-Supported Fluorine Modified Chromium-Vanadium Bimetallic Catalyst for Ethylene Polymerization and Ethylene/1-Hexene Copolymerization", Macromol. React. Eng., 11(5). DOI: 10.1002/mren.201600055
  24. Valente, A., Valente, A., Visseaux, M. and Zinck, Ph. (2013), "Coordinative chain transfer polymerization", Chem. Rev., 113(5), 3836-3857. https://doi.org/10.1021/cr300289z
  25. Wu, Y., Cao, R.L., Chen, X. and Li, Y.X. (2007), "De-tert-butylation Reaction of Tert-butylcalix [6] arene", Chem. Res., 18(1), 46-48. [In Chinese]
  26. Xia, Sh.J., Fu, Zh.S., Huang, B., Xu, J.T. and Fan, Zh.Q. (2012), "Ethylene/1-hexene copolymerization with $MgCl_2$-supported Ziegler-Natta catalysts containing aryloxy ligands. Part I: Catalysts prepared by immobilizing $TiCl_3(OAr)$ onto $MgCl_2$ in batch reaction", J. Mol. Catal. A: Chem., 355, 161-167. https://doi.org/10.1016/j.molcata.2011.12.010
  27. Xu, S. and Huang, J.L. (2013), "Asymmetric binuclear metallocene complexes and their application for olefin polymerization", J. Appl. Polym. Sci., 130(4), 2891-2899. https://doi.org/10.1002/app.39376
  28. Xu, S., Feng, Z.-F. and Huang, J.-L. (2006), "Synthesis of double silylene-bridged binuclear titanium complexes and their use as catalysts for ethylene polymerization", J. Mol. Catal. A: Chem., 250(1-2), 35-39. https://doi.org/10.1016/j.molcata.2005.12.040
  29. Xu, S., Jia, J.J. and, Huang J.L. (2007), "Synthesis of double silylene‐bridged binuclear zirconium complexes and their use as catalysts for olefin polymerization", J. Polym. Sci.: Part A: Polym. Chem., 45(21), 4901-4913. https://doi.org/10.1002/pola.22241
  30. Yao, C.G., Wu, C.J., Wang, B.L. and Cui, D.M. (2013), "Copolymerization of Ethylene with 1-Hexene and 1-Octene Catalyzed by Fluorenyl N-Heterocyclic Carbene Ligated Rare-Earth Metal Precursors", Organometallics, 32(7), 2204-2209. https://doi.org/10.1021/om4000709