DOI QR코드

DOI QR Code

Effect of high energy ball milling on the structure of iron - multiwall carbon nanotubes (MWCNT) composite

  • Kumar, Akshay (Department of Metallurgical and Materials Engineering, Malaviya National Institute of Technology) ;
  • Pandel, U. (Department of Metallurgical and Materials Engineering, Malaviya National Institute of Technology) ;
  • Banerjee, M.K. (Department of Metallurgical and Materials Engineering, Malaviya National Institute of Technology)
  • 투고 : 2017.04.22
  • 심사 : 2017.12.07
  • 발행 : 2017.09.25

초록

High energy ball milling is employed to produce iron matrix- multiwall carbon nanotube (MWCNT) reinforced composite. The damage caused to MWCNT due to harsh ball milling condition and its influence on interfacial bonding is studied. Different amount of MWCNT is used to find the optimal percentage of MWCNT for avoidance of the formation of chemical reaction product at the matrix - reinforcement interface. Effect of process control agent is assessed by the use of different materials for the purpose. It is observed that ethanol as a process control agent (PCA) causes degradation of MWCNT reinforcements after milling for two hours whereas solid stearic acid used as process control agent, allows satisfactory conservation of MWCNT structure. It is further noted that at a high MWCNT content (~ 2wt.%), high energy ball milling leads to reaction of iron and carbon and forms iron carbide (cementite) at the iron-MWCNT interface. At low percentage of MWCNT, dissolution of carbon in iron takes place and the amount of reinforcement in iron matrix composite becomes negligibly small. However, under the present ball milling condition (ball to metal ratio~ 6:1 and 200 rpm vial speed) iron-1wt.% MWCNT composite of good interfacial bonding can retain the tubular structure of reinforcing MWCNT.

키워드

참고문헌

  1. Bakshi, S.K., Lahiri, D. and Agarwal, A. (2010), "Carbon nanotube reinforced metal matrix composites - A review", Int. Mater. Rev., 55(1), 41-64. https://doi.org/10.1179/095066009X12572530170543
  2. Basariya, M.R, Srivastava, V.C. and Mukhopadhyay, N.K. (2014), "Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling", Mater. Des., 64, 542-549. https://doi.org/10.1016/j.matdes.2014.08.019
  3. Cha, S.I., Kim, K.T., Arshad, S.N., Mo, C.B. and Hong, S.H. (2005), "Extraordinary strengthening effect of carbon nanotubes in metal‐matrix nanocomposites processed by molecular-level mixing", Adv. Mater., 17(11), 1377-1381. DOI: 10.1002/adma.200401933
  4. Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), "Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity", Adv. Nano Res., Int. J., 3(4), 193-206. https://doi.org/10.12989/anr.2015.3.4.193
  5. Chen, B., Shen, J., Ye, X., Imai, H., Umeda, J., Takahashi, M. and Kondoh, K. (2017), "Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites", Carbon, 114, 198-208. https://doi.org/10.1016/j.carbon.2016.12.013
  6. Choi, H., Shin, J., Min, B., Park, J. and Bae, D. (2009), "Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites", J. Mater. Res., 24(8), 2610-2616. https://doi.org/10.1557/jmr.2009.0318
  7. Choi, H.J., Shin, J.H. and Bae, D.H. (2012), "The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites", Composites Part A, 43(7), 1061-1072. https://doi.org/10.1016/j.compositesa.2012.02.008
  8. Dillon, F.C., Bajpai, A., Koo, s.A, Downes, S., Aslam, Z. and Grobert, N. (2012), "Tuning the magnetic properties of iron-filled carbon nanotubes", Carbon, 50(10), 3674-3681. https://doi.org/10.1016/j.carbon.2012.03.040
  9. El-sherbiny, Sh.G., Wageh, S., Elhalafawy, S.M. and Sharsha, A.A. (2013), "Carbon nanotube antennas analysis and applications: review", Adv. Nano Res., Int. J., 1(1), 13-27. https://doi.org/10.12989/anr.2013.1.1.013
  10. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0
  11. Kazemi, M.H., Akhavan-Behabadi, M.A. and Nasr, M. (2014), "Convective heat transfer of MWCNT / HT-B Oil nanofluid inside micro-fin helical tubes under uniform wall temperature condition", Adv. Nano Res., Int. J., 2(2), 99-109. https://doi.org/10.12989/anr.2014.2.2.099
  12. Languillaume, J., Kapelski, G. and Baudelet, B. (1997), "Cementite dissolution in heavily cold drawn pearlitic steel wires", Acta Mater., 45(3), 1201-1212. https://doi.org/10.1016/S1359-6454(96)00216-9
  13. Maleque, M.A., Abdullah, U., Yaacob, I. and Ali, Y. (2016), "Characterization of ball-milled carbon nanotube dispersed aluminum mixed powders", IOP Conf. Ser.: Mater. Sci. Eng., 123(1), 1-6.
  14. Munir, K.S., Qian, M., Li, Y., Oldfield, D.T., Kingshott, P., Zhu, D.M. and Wen, C. (2015), "Quantitative analysis of MWCNT-Ti powder mixtures using Raman spectroscopy: The influence of milling parameters on nonstructural evolution", Adv. Eng. Mater., 17(11), 1660-1669. https://doi.org/10.1002/adem.201500142
  15. Paul, R., Kumbhakar, P. and Mitra, A.K. (2013), "A facile chemical synthesis of a novel photo catalyst: SWCNT/titania nanocomposite", Adv. Nano Res., Int. J., 1(2), 71-82. https://doi.org/10.12989/anr.2013.1.2.071
  16. Peng, T. and Chang, I. (2014), "Mechanical alloying of multi-walled carbon nanotubes reinforced aluminum composite powder", Powder Technology, 266, 7-15. https://doi.org/10.1016/j.powtec.2014.05.068
  17. Poirier, D., Gauvin, R. and Drew, R.A.L. (2009), "Structural characterization of a mechanically milled carbon nanotube/aluminum mixture", Compos. A, 40(9), 1482-1489. https://doi.org/10.1016/j.compositesa.2009.05.025
  18. Rakrak, K., Zidour, M., Heireche, H., Bousahla, A.A. and Chemi, A. (2016), "Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory", Adv. Nano Res., Int. J., 4(1), 31-44. https://doi.org/10.12989/anr.2016.4.1.031
  19. Suh, J.Y. and Bae, D.H. (2013), "Mechanical properties of Fe-based composites reinforced with multi -walled carbon nanotubes", Mater. Sci. Eng. A, 582, 321-325. https://doi.org/10.1016/j.msea.2013.06.057
  20. Vishlaghi, M.B. and Ataie, A. (2014), "Investigation on solid solubility and physical properties of Cu-Fe/CNT nano-composite prepared via mechanical alloying route", Powder Technology, 268, 102-109. https://doi.org/10.1016/j.powtec.2014.08.010
  21. Zhou, W.W., Bang, S., Kurita, H., Miyazaki, T., Fan, Y. and Kawasaki, A. (2016), "Interface and interfacial reactions in multi-walled carbon nanotube reinforced aluminum matrix composites", Carbon, 96, 919-928. https://doi.org/10.1016/j.carbon.2015.10.016
  22. Zhou, W., Bang, S., Kurita, H., Miyazaki, T., Fan, Y. and Kawasaki, A. (2017), "Interface and interfacial reactions in multi-walled carbon nanotube reinforced aluminum matrix composite", Carbon, 96, 919-928.