DOI QR코드

DOI QR Code

다층박막법을 이용한 표면 젖음성 제어 기술 동향

Technology Trend of surface Wettability Control Using Layer-by-Layer Assembly Technique

  • 성충현 (동의대학교 고분자소재공학 전공)
  • Sung, Chunghyun (Polymeric Materials Engineering Major, Dong-eui University)
  • 투고 : 2017.10.31
  • 심사 : 2017.12.13
  • 발행 : 2017.12.31

초록

최근 들어, 다층박막법(Layer-by-Layer(LbL) assembly)을 이용한 표면 젖음성 제어 기술이 큰 관심을 받고 있다. 다층박막법은 고분자, 계면활성제, 나노 입자 등과 같은 다양한 재료를 이용하여 수직 구조와 표면 특성을 나노 및 마이크로 스케일로 제어할 수 있는 다기능적이며 친환경적인 제조방법이다. 본 논문에서는 다층박막법을 이용하여 표면 특성을 제어하는 기술의 최근 동향을 살펴보고자 한다. 특히, 초발수, 초친수, 초발유/초친수 LbL 표면의 제조와 응용에 대한 기술 동향과 연구 결과를 기술한다. 또한, omniphobic, 자가-치유, 지능형 및 외부 반응형 표면 등 최근 각광을 받고 있는 분야의 기본적인 원리와 제조 방법 등에 대해 소개하고자 한다.

Recently, layer-by-layer (LbL) assembly has emerged as a promising fabrication technique in controlling surface wetting properties. LbL assembly technique is eco-friendly versatile technique to control the hierarchical structure and surface properties in nano- and micro-scale by employing a variety of materials (e.g., polymers, surfactants, nanoparticles, etc.). This article reviews recent progress in controlling the surface wetting using LbL technique. In particular, technical trends and research findings on fabrication and the applications of superhydrophobic, superhydrophilc, and superoleophobic/superhydrophilic LbL surfaces are extensively explained. Additionally, basic principles and fabrication methods in emerging areas such as omniphobic, self-healing, intelligent and responsive LbL surfaces are discussed.

키워드

참고문헌

  1. T. Soeno, K. Inokuchi and S. Shiratori, Applied Surface Science, 237, 543 (2004).
  2. B. Jiang, H. J. Zhang, Y. L. Sun, L. H. Zhang, L. D. Xu, L. Hao and H. W. Yang, Applied Surface Science, 406, 150 (2017). https://doi.org/10.1016/j.apsusc.2017.02.102
  3. X. J. Guo, C. H. Xue, M. Li, X. Li and J. Z. Ma, Rsc Advances, 7, 25560 (2017). https://doi.org/10.1039/C7RA02111A
  4. X. Lu and Y. C. Hu, Bioresources, 11, 4605 (2016).
  5. L. Zhai, F. C. Cebeci, R. E. Cohen and M. F. Rubner, Nano Letters, 4, 1349 (2004). https://doi.org/10.1021/nl049463j
  6. J. Yu, S. Y. Han, J. S. Hong, O. Sanyal and I. Lee, Langmuir, 32, 8494 (2016). https://doi.org/10.1021/acs.langmuir.6b01798
  7. L. Zhang and J. Q. Sun, Macromolecules, 43, 2413 (2010). https://doi.org/10.1021/ma902508n
  8. L. C. Peng, Y. H. Meng and H. Li, Cellulose, 23, 2073 (2016). https://doi.org/10.1007/s10570-016-0910-5
  9. N. Forsman, A. Lozhechnikova, A. Khakalo, L. S. Johansson, J. Vartiainen and M. Osterberg, Carbohydrate Polymers, 173, 392 (2017). https://doi.org/10.1016/j.carbpol.2017.06.007
  10. M. J. Kratochvil, U. Manna and D. M. Lynn, Journal of Polymer Science Part a-Polymer Chemistry, 55, 3127 (2017). https://doi.org/10.1002/pola.28691
  11. Y. H. Kim, Y. M. Lee, J. Y. Lee, M. J. Ko and P. J. Yoo, ACS Nano, 6, 1082 (2012). https://doi.org/10.1021/nn203226k
  12. S. Hwangbo, J. Heo, X. Lin, M. Choi and J. Hong, Scientific Reports, 6 (2016).
  13. L. B. Zhang, Y. Li, J. Q. Sun and J. C. Shen, Langmuir, 24, 10851 (2008). https://doi.org/10.1021/la801806r
  14. Z. Wu, D. Lee, M. F. Rubner and R. E. Cohen, Small, 3, 1445 (2007). https://doi.org/10.1002/smll.200700084
  15. B. Peng, L. F. Tan, D. Chen, X. W. Meng and F. Q. Tang, Acs Applied Materials & Interfaces, 4, 96 (2012). https://doi.org/10.1021/am2009986
  16. X. M. Liu, X. Du and J. H. He, Chemphyschem, 9, 305 (2008). https://doi.org/10.1002/cphc.200700712
  17. X. Du, X. Y. Li and J. H. He, ACS Applied Materials & Interfaces, 2, 2365 (2010). https://doi.org/10.1021/am1003766
  18. X. Y. Li, X. Du and J. H. He, Langmuir, 26, 13528 (2010). https://doi.org/10.1021/la1016824
  19. X. Y. Li and J. H. He, ACS Applied Materials & Interfaces, 5, 5282 (2013). https://doi.org/10.1021/am401124j
  20. X. Du, X. M. Liu, H. M. Chen and J. H. He, Journal of Physical Chemistry C, 113, 9063 (2009). https://doi.org/10.1021/jp9016344
  21. X. M. Liu and J. H. He, Journal of Colloid and Interface Science, 314, 341 (2007). https://doi.org/10.1016/j.jcis.2007.05.011
  22. H. X. Guo, Y. W. Ma, P. Z. Sun, S. P. Cui, Z. P. Qin and Y. C. Liang, RSC Advances, 5, 63429 (2015). https://doi.org/10.1039/C5RA11438A
  23. M. Choi, L. Xiangde, J. Park, D. Choi, J. Heo, M. Chang, C. Lee and J. Hong, Chemical Engineering Journal, 309, 463 (2017). https://doi.org/10.1016/j.cej.2016.10.052
  24. X. Lin, M. Yang, H. Jeong, M. Chang and J. Hong, Journal of Membrane Science, 506, 22 (2016). https://doi.org/10.1016/j.memsci.2016.01.035
  25. D. Liu, M. W. Zhang, L. He, Y. Chen and W. W. Lei, Advanced Materials Interfaces, 4 (2017).
  26. Z. X. Xue, S. T. Wang, L. Lin, L. Chen, M. J. Liu, L. Feng and L. Jiang, Advanced Materials, 23, 4270 (2011). https://doi.org/10.1002/adma.201102616
  27. L. P. Xu, J. T. Peng, Y. B. Liu, Y. Q. Wen, X. J. Zhang, L. Jiang and S. T. Wang, ACS Nano, 7, 5077 (2013). https://doi.org/10.1021/nn400650f
  28. K. Hon, Y. C. Zeng, C. L. Zhou, J. H. Chen, X. F. Wen, S. P. Xu, J. Cheng, Y. G. Lin and P. H. Pi, Applied Surface Science, 416, 344 (2017). https://doi.org/10.1016/j.apsusc.2017.03.302
  29. A. Tuteja, W. Choi, M. L. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley and R. E. Cohen, Science, 318, 1618 (2007). https://doi.org/10.1126/science.1148326
  30. P. S. Brown and B. Bhushan, Scientific Reports, 5 (2015).
  31. F. C. Xu, X. Li, Y. Li and J. Q. Sun, ACS Applied Materials & Interfaces, 9, 27955 (2017). https://doi.org/10.1021/acsami.7b08996
  32. T. S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal and J. Aizenberg, Nature, 477, 443 (2011). https://doi.org/10.1038/nature10447
  33. X. Y. Huang, J. D. Chrisman and N. S. Zacharia, ACS Macro Letters, 2, 826 (2013). https://doi.org/10.1021/mz400387w
  34. K. Manabe, S. Nishizawa, K. H. Kyung and S. Shiratori, ACS Applied Materials & Interfaces, 6, 13985 (2014). https://doi.org/10.1021/am503352x
  35. S. Sunny, N. Vogel, C. Howell, T. L. Vu and J. Aizenberg, Advanced Functional Materials, 24, 6658 (2014). https://doi.org/10.1002/adfm.201401289
  36. Y. Li, L. Li and J. Q. Sun, Angewandte Chemie-International Edition, 49, 6129 (2010). https://doi.org/10.1002/anie.201001258
  37. Y. Li, S. S. Chen, M. C. Wu and J. Q. Sun, Advanced Materials, 26, 3344 (2014). https://doi.org/10.1002/adma.201306136
  38. L. Yu, G. Y. Chen, H. L. Xu and X. K. Liu, ACS Nano, 10, 1076 (2016). https://doi.org/10.1021/acsnano.5b06404
  39. M. C. Wu, N. An, Y. Li and J. Q. Sun, Langmuir, 32, 12361 (2016). https://doi.org/10.1021/acs.langmuir.6b02607
  40. L. M. Wang, B. Peng and Z. H. Su, Langmuir, 26, 12203 (2010). https://doi.org/10.1021/la101064c
  41. J. Yang, Z. Z. Zhang, X. H. Men, X. H. Xu, X. T. Zhu, X. Y. Zhou and Q. J. Xue, Journal of Colloid and Interface Science, 366, 191 (2012). https://doi.org/10.1016/j.jcis.2011.09.076
  42. X. C. Chen, K. F. Ren, J. Wang, W. X. Lei and J. Ji, ACS Applied Materials & Interfaces, 9, 1959 (2017). https://doi.org/10.1021/acsami.6b14081
  43. A. Chunder, K. Etcheverry, G. Londe, H. J. Cho and L. Zhai, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 333, 187 (2009).
  44. A. de Leon and R. C. Advincula, Acs Applied Materials & Interfaces, 6, 22666 (2014). https://doi.org/10.1021/am506050k
  45. Y. M. Lu, M. A. Sarshar, K. Du, T. M. Chou, C. H. Choi and S. A. Sukhishvili, ACS Applied Materials & Interfaces, 5, 12617 (2013). https://doi.org/10.1021/am403944m