DOI QR코드

DOI QR Code

연소 조건과 수종을 달리한 블랙카본의 물리화학적 성질 및 세슘의 흡착 특성

Physicochemical and Adsorptive Properties of Black Carbon for Radioactive Cesium under Various Combustion Conditions and Tree Species

  • 전소담 (한국기초과학지원연구원 지구환경연구부) ;
  • 정성욱 (한국기초과학지원연구원 지구환경연구부) ;
  • 한원식 (연세대학교 지구시스템과학과) ;
  • 장경순 (한국기초과학지원연구원 생의학오믹스연구팀) ;
  • 신우식 (한국기초과학지원연구원 지구환경연구부) ;
  • 황정환 (한국기초과학지원연구원 지구환경연구부)
  • Jeon, Sodam (Division of Earth and Environmental Sciences, Korea Basic Science Institute) ;
  • Choung, Sungwook (Division of Earth and Environmental Sciences, Korea Basic Science Institute) ;
  • Han, Weon Shik (Department of Earth System Sciences, Yonsei University) ;
  • Jang, Kyoung-Soon (Biomedical Omics Group, Korea Basic Science Institute) ;
  • Shin, Woosik (Division of Earth and Environmental Sciences, Korea Basic Science Institute) ;
  • Hwang, Jeonghwan (Division of Earth and Environmental Sciences, Korea Basic Science Institute)
  • 투고 : 2017.05.15
  • 심사 : 2017.10.25
  • 발행 : 2017.11.30

초록

This study was carried out to investigate the physicochemical and adsorptive characteristics of black carbon (BC) materials for cesium in case of severe nuclear accidents. The BC was prepared with a xylem of oak and pine trees incompletely combusted with different ramp rate and final temperature. Carbon (C), hydrogen (H) and oxygen (O) atomic ratios, BET, pore structure, and zeta potential were characterized for the produced BC. A low cesium concentration ($C_w{\approx}10^{-7}M$) was used for sorption batch experiments. The H/C and O/C ratios of BC decreased with the increase of final temperature, which indicates a carbonization of the wood materials regardless of ramp rate and tree species. However, SEM images showed different pore structures depending on tree species such as steric and plate-like for oak-BC and pine-BC, respectively. The greatest sorption distribution coefficients of $K_{d,Cs}{\approx}1,200{\sim}1,800L\;kg^{-1}$ were observed for the oak-BC produced at $400^{\circ}C$, while comparatively low $K_{d,Cs}$ < $100L\;kg^{-1}$ for pine-BC. In addition, the sorption capabilities of BC declined with the increase of combustion temperature up to $600^{\circ}C$, because high temperature destroyed surface functionalities with the rise of ash components in the BC. Therefore, the sorption processes of BC for radioactive cesium are predominantly controlled by final production temperature of BC as well as raw materials (e.g., tree species).

키워드

참고문헌

  1. Bailey, A. W. and Anderson, M. L. (1980). Fire Temperatures in Grass, Shrub and Aspen Forest Communities of Central Alberta, Journal of Range Management, 33(1), 37-40. https://doi.org/10.2307/3898225
  2. Baldock, J. A. and Smernik, R. J. (2002). Chemical Composition and Bioavailability of Thermally Altered Pinus Resinosa (Red Pine) Wood, Organic Geochemistry, 33(9), 1093-1109. https://doi.org/10.1016/S0146-6380(02)00062-1
  3. Barrett, E. P., Joyner, L. G., and Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical Society, 73(1), 373-380. https://doi.org/10.1021/ja01145a126
  4. Brown, R. A., Kercher, A. K., Nguyen, T. H., Nagle, D. C., and Ball, W. P. (2006). Production and Characterization of Synthetic Wood Chars for Use as Surrogates for Natural Sorbents, Organic Geochemistry, 37(3), 321-333. https://doi.org/10.1016/j.orggeochem.2005.10.008
  5. Brunauer, S., Emmett, P. H., and Teller, E. (1938). Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, 60(1), 309-319. https://doi.org/10.1021/ja01269a023
  6. Cao, X., Pignatello, J., Li, Y., Lattao, C., Campbell, M. A., Chen, N., Nesley M. F., and Mao, J. (2012). Characterization of Wood Chars Produced at Different Temperatures Using Advanced Solid-State $^{13}C$ NMR Spectroscopic Techniques, Energy & Fuels, 26, 5983-5991. https://doi.org/10.1021/ef300947s
  7. Chang, S. E., Choung, S. W., Um, W. Y., and Chon, C. M. (2013). Effects of Weathering Processes on Radioactive Cesium Sorption with Mineral Characterization in Korean Nuclear Facility Site, Journal of the Mineralogical Society of Korea, 26(3), 209-218. [Korean Literature] https://doi.org/10.9727/jmsk.2013.26.3.209
  8. Choi, B. I., Kim, J. C., and Woo, S. B. (2011). Results of Round Robin Test for Specific Surface Area, Analytical Science & Technology, 24(6), 503-509. [Korean Literature] https://doi.org/10.5806/AST.2011.24.6.503
  9. ClauBen, A. and Rosen, A. (2016). 5 Years Living with Fukushima, (Catherine Thomasson), IPPNW Germany and PSR USA, Germany, 16.
  10. Fang, Q., Chen, B., Lin, Y., and Guan, Y. (2013). Aromatic and Hydrophobic Surfaces of Wood-Derived Biochar Enhance Perchlorate Adsorption via Hydrogen Bonding to Oxygen-Containing Organic Groups, Environmental Science & Technology, 48(1), 279-288. https://doi.org/10.1021/es403711y
  11. Glaser, B., Haumaier, L., Guggenberger, G., and Zech, W. (2001). The "Terra Preta" Phenomenon: A model for Sustainable Agriculture in the Humid Tropics, Environmental Science & Technology, 88(1), 37-41.
  12. Ho, Y. S. and McKay, G. (1999). Pseudo-Second Order Model for Sorption Processes, Process Biochemistry, 34(5), 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  13. Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M. A., and Sonoki, T. (2014). Physical and Chemical Characterization of Biochars Derived from Different Agricultural Residues, Biogeosciences, 11(23), 6613-6621. https://doi.org/10.5194/bg-11-6613-2014
  14. Jo, T. S., Choi, J. W., and Lee, O. K. (2007). Physicochemical Changes of Woody Charcoals Prepared by Different Carbonizing Temperature, Journal of Korean Wood Science and Technology, 35(3), 53-60. [Korean Literature]
  15. Korea Forest Service. (2016). Statistical Yearbook of Forestry 2016, 11-1400000-000001-10, Korea Forest Service, 34. [Korean Literature]
  16. Lee, C. H. (2013). External Costs of Nuclear Energy in Korea, Korea Environment Institute, 2-3. [Korean Literature]
  17. Lelieveld, J., Kunkel, D., and Lawrence, M. G. (2012). Global Risk of Radioactive Fallout after Major Nuclear Reactor Accidents, Atmospheric Chemistry and Physics, 12(9), 4245-4258. https://doi.org/10.5194/acp-12-4245-2012
  18. Li, X., Shen, Q., Zhang, D., Mei, X., Ran, W., Xu, Y., and Yu, G. (2013). Functional Groups Determine Biochar Properties (pH and EC) as Studied by Two-Dimensional $^{13}C$ NMR Correlation Spectroscopy, Public Library of Science ONE, 8(6), 65949.
  19. Manabe, T., Ohata, M., Yoshizawa, S., Nakajima, D., Goto, S., Uchida, K., and Yajima, H. (2007). Effect of Carbonization Temperature on the Physicochemical Structure of Wood Charcoal, Transactions of the Materials Research Society of Japan, 32(4), 1035-1038.
  20. Masiello, C. A. (2004). New Directions in Black Carbon Organic Geochemistry, Marine Chemistry, 92, 201-213. https://doi.org/10.1016/j.marchem.2004.06.043
  21. Noshin, H., Somaieh, K., and Hossein, A. (2009). Equilibrium and Thermodynamic Studies of Cesium Adsorption on Natural Vermiculite and Optimization of Operation Conditions, Iranian Journal of Chemistry and Chemical Engineering, 28(4), 29-36.
  22. Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S. M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X. Y. (2013). Recommendations for Reporting Black Carbon Measurements, Atmospheric Chemistry and Physics, 13(16), 8365-8379. https://doi.org/10.5194/acp-13-8365-2013
  23. Plazinski, W., Dziuba, J., and Rudzinski, W. (2013). Modeling of Sorption Kinetics: The Pseudo-Second Order Equation and the Sorbate Intraparticle Diffusivity, Adsorption, 19(5), 1055-1064. https://doi.org/10.1007/s10450-013-9529-0
  24. Pohl, K., Cantwell, M., Herckes, P., and Lohmann, R. (2014). Black Carbon Concentrations and Sources in the Marine Boundary Layer of the Tropical Atlantic Ocean using Four Methodologies, Atmospheric Chemistry and Physics, 14(14), 7431-7443. https://doi.org/10.5194/acp-14-7431-2014
  25. Reyes, O., Kaal, J., Aran, D., Gago, R., Bernal, J., Garcia-Duro, J., and Basanta, M. (2015). The Effects of Ash and Black Carbon (Biochar) on Germination of Different Tree Species, Fire Ecology, 11(1), 119-133. https://doi.org/10.4996/fireecology.1101119
  26. Rutherford, D. W., Wershaw, R. L., Rostad, C. E., and Kelly, C. N. (2012). Effect of Formation Conditions on Biochars: Compositional and Structural Properties of Cellulose, Lignin, and Pine Biochars, Biomass and Bioenergy, 46, 693-701. https://doi.org/10.1016/j.biombioe.2012.06.026
  27. Schmidt, M. W. I., Skjemstad, J. O., and Jager, C. (2002). Carbon Isotope Geochemistry and Nanomorphology of Soil Black Carbon: Black Chernozemic Soils in Central Europe Originate from Ancient Biomass Burning, Global Biogeochemical Cycles, 16(4), 1123.
  28. Sing, K., Everett D., Haul, R., Moscou, L., Pierotti, R., Rouquerol, J., and Siemieniewska, T. (1985). IUPAC Commission on Colloid and Surface Chemistry including Catalysis. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984), Pure and Applied Chemistry, 57(4), 603-619. https://doi.org/10.1351/pac198557040603
  29. Spokas, K. A. (2010). Review of the Stability of Biochar in Soils: Predictability of O:C Molar Ratios, Carbon Management, 1(2), 289-303. https://doi.org/10.4155/cmt.10.32
  30. Stohl, A., Klimont, Z., Eckhardt, S., Kupiainen, K., Shevchenko, V. P., Kopeikin, V. M., and Novigatsky, A. N. (2013). Black Carbon in the Arctic: The Underestimated Role of Gas Flaring and Residential Combustion Emissions, Atmospheric Chemistry and Physics, 13(17), 8833-8855. https://doi.org/10.5194/acp-13-8833-2013
  31. Subhas, A. V., Rollins, N. E., Berelson, W. M., Dong, S., Erez, J., and Adkins, J. F. (2015). A Novel Determination of Calcite Dissolution Kinetics in Seawater, Geochimica et Cosmochimica Acta, 170, 51-68. https://doi.org/10.1016/j.gca.2015.08.011
  32. Uchimiya, M., Chang, S., and Klasson, K. T. (2011). Screening Biochars for Heavy Metal Retention in Soil: Role of Oxygen Functional Groups, Journal of Hazardous Materials, 190(1-3), 432-441. https://doi.org/10.1016/j.jhazmat.2011.03.063
  33. Vanderheyden, S. R. H., Van Ammel, R., Sobiech-Matura, K., Vanreppelen, K., Schreurs, S., Schroeyers, W., Yperman, J., Carleer, R. (2016). Adsorption of Cesium on Different Types of Activated Carbon, Journal of Radioanalytical and Nuclear Chemistry, 310(1), 301-310. https://doi.org/10.1007/s10967-016-4807-4
  34. Volchek, K., Miah, M. Y., Kuang, W., DeMaleki, Z., and Tezel, F. H. (2011). Adsorption of Cesium on Cement Mortar from Aqueous Solutions, Journal of Hazardous Materials, 194, 331-337. https://doi.org/10.1016/j.jhazmat.2011.07.111
  35. Woo, S. H. (2013). Biochar for Soil Carbon Sequestration, Clean Technology, 19(3), 201-211. [Korean Literature] https://doi.org/10.7464/ksct.2013.19.3.201
  36. Xiao, X., Chen, Z., and Chen, B. (2016). H/C Atomic Ratio as a Smart Linkage between Pyrolytic Temperatures, Aromatic Clusters and Sorption Properties of Biochars Derived from Diverse Precursory Materials, Scientific Reports, 6, 22644. https://doi.org/10.1038/srep22644
  37. Yang, H. M., Jang, S. C., Hong, S. B., Lee, K. W., Roh, C., Huh, Y. S., and Seo, B. K. (2016). Prussian Blue-Functionalized Magnetic Nanoclusters for the Removal of Radioactive Cesium from Water, Journal of Alloys and Compounds, 657, 387-393. https://doi.org/10.1016/j.jallcom.2015.10.068
  38. Yasunari T, Stohl A, Hayano R, Burkhart J, and Eckhardt S. (2011). Cesium-137 Deposition and Contamination of Japanese Soils due to the Fukushima Nuclear Accident, Proceedings of the National Academy of Sciences, 108(49), 19530-19534. https://doi.org/10.1073/pnas.1112058108
  39. Yeom, C. H., Lee, S. Y., Kwon, C. G., and Lee, H. P. (2012). The Study for Wildfire Risk Recognition of Facilities in Wildland Urban Interface of the Facility Administrator. Proceedings of the Korea Institute of Fire Science and Engineering Conference, Korean Institute of Fire Science & Engineering, 202-205. [Korean Literature]
  40. Zawadzki, J. and Wisniewski, M. (2002). $^{13}C$ NMR Study of Cellulose Thermal Treatment, Journal of Analytical and Applied Pyrolysis, 62(1), 111-121. https://doi.org/10.1016/S0165-2370(00)00217-5