DOI QR코드

DOI QR Code

가평천 어류의 서식처적합도지수 산정

Estimation of Habitat Suitability Index of Fish Species in the Gapyeong stream

  • 공동수 (경기대학교 생명과학과) ;
  • 손세환 (국립생태원 생태기반연구실) ;
  • 김진영 (국립환경과학원 물환경연구부) ;
  • 김필재 (경기대학교 생명과학과) ;
  • 권용주 (경기대학교 생명과학과) ;
  • 김정우 (경기대학교 생명과학과) ;
  • 김예지 (경기대학교 생명과학과) ;
  • 민정기 (경기대학교 생명과학과) ;
  • 김아름 (경기대학교 생명과학과)
  • Kong, Dongsoo (Department of Life Science, Kyonggi University) ;
  • Son, Se-Hwan (Division of Basic Ecology, National Institute of Ecology) ;
  • Kim, Jin-Young (Water Environment Research Department, National Institute of Environmental Research) ;
  • Kim, Piljae (Department of Life Science, Kyonggi University) ;
  • Kwon, Yongju (Department of Life Science, Kyonggi University) ;
  • Kim, Jungwoo (Department of Life Science, Kyonggi University) ;
  • Kim, Ye Ji (Department of Life Science, Kyonggi University) ;
  • Min, Jeong Ki (Department of Life Science, Kyonggi University) ;
  • Kim, Ah Reum (Department of Life Science, Kyonggi University)
  • 투고 : 2017.05.22
  • 심사 : 2017.09.22
  • 발행 : 2017.11.30

초록

Based on an ecological monitoring in a Korean stream (Gapyeong), Habitat Suitability Index (HSI) of nine fish species was developed for three physical habitat factors : current velocity, water depth and substrate. The species were chosen based on their abundance and frequency in the fish community of the Gapyeong stream. The Weibull model was used as the probability density function to analyze the distribution and number of each fish species according to the three identified physical factors, which showed good results. This HSI equation has advantages because it statistically expresses habitat preferences of fish species simply and clearly. From that, we can quantitatively deduce the central tendency and variation of environmental factors for fish distribution. The selected fish species showed different preferences for each habitat factor respectively. Although there are some exceptions, the distribution and abundance of individual species of nektonic fish (Zacco koreanus, Zacco platypus, Microphysogobio longidorsalis and Pungtungia herzi) were positively skewed to deep water and fine substrate while riffle-benthic fish (Koreocobitis rotundicaudata and Coreoleuciscus splendidus) were normally distributed at the shallow and coarse substrate zone. It seems that the species showing the positively skewed distribution to the current, Z. koreanus, Z. platypus, M. longidorsalis and P. herzi have adapted themselves to the fast current and have expanded their niche.

키워드

참고문헌

  1. Acreman, M. (2016). Environmental Flows-Basics for Novices, Wiley Interdisciplinary Reviews: Water, 3(5), 622-628. https://doi.org/10.1002/wat2.1160
  2. Ahmadi-Nedushan, B., St-Hilaire, A., Berube, M., Robichaud, E., Thiemonge, N., and Bobee, B. (2006). A Review of Statistical Methods for the Evaluation of Aquatic Habitat Suitability for Instream Flow Assessment, River Research and Applications, 22(5), 503-523. https://doi.org/10.1002/rra.918
  3. Bovee, K. D. and Cochnaeur, T. (1977). Development and Evaluation of Weighted Criteria, Probability-of-Use Curves for Instream Flow Assessments : Fisheries, Instream Flow Information No. 3, FWS/OBS-77/33, Cooperative Instream Flow Services Group, US Fish and Wildlife Service, Fort Collins, Colorado, 39.
  4. Cummins, K. W. (1962). An Evaluation of Some Techniques for the Collection and Analysis of Benthic Samples with Special Emphasis on Lotic Waters, The American Midland Naturalist, 67(2), 477-504. https://doi.org/10.2307/2422722
  5. Flather, C. (1996). Fitting Species-Accumulation Functions and Assessing Regional Land Use Impacts on Avian Diversity, Journal of Biogeography, 23(2), 155-168. https://doi.org/10.1046/j.1365-2699.1996.00980.x
  6. Gore, J. A., Layzer, J. B., and Mead, J. I. M. (2001). Macroinvertebrate Instream Flow Studies After 20 Years: A Role in Stream Management and Restoration, River Research and Applications, 17(4-5), 527-542.
  7. Green, R. E. and Stowe, T. J. (1993). The Decline of the Corncrake Crex crex in Britain and Ireland in Relation to Habitat Change, Journal of Applied Ecology, 30, 689-695. https://doi.org/10.2307/2404247
  8. Hur, J. W., Kim, D. H., and Kang, H. (2014). Estimation of Optimal Ecological Flowrate of Fish in Chogang Stream, Ecology and Resilient Infrastructure, 1(1), 39-48. [Korean Literature] https://doi.org/10.17820/eri.2014.1.1.039
  9. Inglis, G. J., Hurren, H., Oldman, J., and Haskew, R. (2006). Using Habitat Suitability Index and Particle Dispersion Models for Early Detection of Marine Invaders, Ecological Applications, 16(4), 1377-1390. https://doi.org/10.1890/1051-0761(2006)016[1377:UHSIAP]2.0.CO;2
  10. Instream Flow and Aquatic Systems Group (IFASG). (1986). Development and Evaluation of Habitat Suitability Criteria for Use in the Instream Flow Incremental Methodology: Biological Report, Instream Flow Information Paper No. 21, National Ecology Center.
  11. Jowett, I. G., Richardson, J., Biggs, B. J., Hickey, C. W., and Quinn, J. M. (1991). Microhabitat Preferences of Benthic Invertebrates and the Development of Generalised Deleatidium spp. Habitat Suitability Curves, Applied to Four New Zealand Rivers, New Zealand Journal of Marine and Freshwater Research, 25(2), 187-199. https://doi.org/10.1080/00288330.1991.9516470
  12. Kang, H. (2012). Comparison of Physical Habitat Suitability Index for Fishes in the Rivers of Han and Geum River Watersheds, Journal of the Korean Society of Civil Engineers, 32(1B), 71-78. [Korean Literature] https://doi.org/10.12652/KSCE.2012.32.1B.071
  13. Kang, H., Im, D., Hur, J. W., and Kim, K. H. (2011). Estimation of Habitat Suitability Index of Fish Species in the Geum River Watershed, Journal of the Korean Society of Civil Engineers, 31(2B), 193-203. [Korean Literature]
  14. Kang, J. H., Lee, E. T., Lee, J. H., and Lee, D. H. (2004). Estimation of River Instream Flow Considering Fish Habitat Conditions, Journal of Korea Water Resources Association, 37(11), 915-927. [Korean Literature] https://doi.org/10.3741/JKWRA.2004.37.11.915
  15. Kemp, W. M., Batiuk, R., Bartleson, R., Bergstrom, P., Carter, V., Gallegos, C. L., Hunley, W., Karrh, L., Koch, E. W., Landwehr, J. M., Moore, K. M., Moore, K. A., Murray, L., Naylor, M., Rybicki, N. B., Stevenson, J. C., and Wilcox, D. J. (2004). Habitat Requirements for Submerged Aquatic Vegetation in Chesapeake Bay: Water Quality, Light Regime, and Physical-Chemical Factors, Estuaries, 27(3), 363-377. https://doi.org/10.1007/BF02803529
  16. Kim, G. H., Jo, W. C., and Jeon, B. H. (2000). Estimation of Suitable Flow Needs for Maintaining Fish Habitat Conditions Using Water Uantity and Quality Simulation, Journal of Korea Water Resources Association, 33(1), 3-14. [Korean Literature]
  17. Kim, K. H. (1999). Evaluation of Habitat Conditions and Estimation of Optimum Flow for the Freshwater Fish, Ph. D. Dissertation, Yonsei University, Seoul, Korea, 95-122. [Korean Literature]
  18. Kim, K. O., Park, Y. K., Kang, J. I., and Lee, B. S. (2016). Estimation of Ecological Flow and Habitat Suitability Index at Jeonju-Cheon Upstream, Journal of Korean Society of Environmental Engineers, 38(2), 47-55. [Korean Literature] https://doi.org/10.4491/KSEE.2016.38.2.47
  19. Kong, D. and Kim, A. R. (2015). Analysis on the Relationship between Number of Species and Survey Area of Benthic Macroinvertebrates Using Weibull Distribution Function, Journal of Korean Society on Water Environment, 31(2), 142-150. [Korean Literature] https://doi.org/10.15681/KSWE.2015.31.2.142
  20. Lee, J. H., Jeong, S. M., Lee, M. H., and Lee, Y. S. (2006). Estimation of Instream Flow for Fish Habitat Using Instream Flow Incremental-Methodology (IFIM) for Major Tributaries in Han River Basin, Journal of the Korean Society of Civil Engineers, 26(2B), 153-160. [Korean Literature]
  21. Li, F., Cai, Q., Fu, X., and Liu, J. (2009). Construction of Habitat Suitability Models (HSMs) for Benthic Macroinvertebrate and Their Applications to Instream Environmental Flows: A Case Study in Xiangxi River of Three Gorges Reservior Region, China, Progress in Natural Science, 19(3), 359-367. https://doi.org/10.1016/j.pnsc.2008.07.011
  22. Santos, K. C., Tague, C., Alberts, A. C., and Franklin, J. (2006). Sea Turtle Nesting Habitat on the US Naval Station, Guantanamo Bay, Cuba: A Comparison of Habitat Suitability Index Models, Chelonian Conservation and Biology, 5(2), 175-187. https://doi.org/10.2744/1071-8443(2006)5[175:STNHOT]2.0.CO;2
  23. Schadt, S., Revilla, E., Wiegand, T., Knauer, F., Kaczensky, P., Breitenmoser, U., Bufka, L., Cerveny, J., Koubek, P., Huber, T., Stanisa, C., and Trepl, L. (2002). Assessing the Suitability of Central European landscapes for the Reintroduction of Eurasian Lynx, Journal of Applied Ecology, 39(2), 189-203. https://doi.org/10.1046/j.1365-2664.2002.00700.x
  24. Stalnaker C. B., Lamb B. L., Henriksen J., Bovee K., and Bartholow J. (1995). The Instream Flow Incremental Methodology: A Primer for IFIM, Biological Report 29, United States Geologi Survey Press, Washington, D. C., 17-19.
  25. Sung, Y. D., Park, B. J., Joo, G. J., and Jung, K. S. (2005). The Estimation of Ecological Flow Recommendations for Fish Habitat, Journal of Korea Water Resources Association, 38(7), 545-554. [Korean Literature] https://doi.org/10.3741/JKWRA.2005.38.7.545
  26. Tamai, N., Okuda, S., and Nakamura, S. (2000). Assessing Riverine Environments for Habitat Suitability on the Basis of Natural Potential, University of Tokyo Press, 1-270.
  27. Thame, R. (2003). A Global Perspective on Environmental Flow Assessment: Amerging Trends in the Development and Application of Environmental Flow Methodologies for Rivers, River Research and Applications, 19(5-6), 397-441. https://doi.org/10.1002/rra.736
  28. United States Geological Survey (USGS). (2001). PHABSIM for Windows - User's Manual and Excercises, Midcontinent Ecological Science Center, Open File Report 2001-340, Waddle, T., Washington, D.C., 1-288.
  29. Vadas R. L. and Orth D. J. (2001). Vadas Jr, R. L., & Orth, D. J. (2001). Formulation of Habitat Suitability Models for Stream Fish Guilds: Do the Standard Methods Work?, Transactions of the American Fisheries Society, 130(2), 217-235. https://doi.org/10.1577/1548-8659(2001)130<0217:FOHSMF>2.0.CO;2
  30. Vincenzi, S., Caramori, G., Rossi, R., and De Leo, G. A. (2007). A Comparative Analysis of Three Habitat Suitability Models for Commercial Yield Estimation of Tapes philippinarum in a North Adriatic Coastal Lagoon (Sacca di Goro, Italy), Marine Pollution Bulletin, 55(10), 579-590. https://doi.org/10.1016/j.marpolbul.2007.09.016
  31. Vismara, R., Azzellino, A., Bosi, R., Crosa, G., and Gentili, G. (2001). Habitat Suitability Curves for Brown Trout (Salmo trutta fario L.) in the River Adda, Northern Italy: Comparing Univariate and Multivariate Approaches, Regulated Rivers: Research & Management, 17(1), 37-50. https://doi.org/10.1002/1099-1646(200101/02)17:1<37::AID-RRR606>3.0.CO;2-Q
  32. Washington Department of Fish and Wildlife (WDFW). (1996). Instream Flow Study Guidelines, Washington Department of Fish and Wildlife.
  33. Weibull, W. (1951). A Statistical Distribution Function of Wide Applicability, Journal of Applied Mathematics, 18(3), 293-296.
  34. Wingfield, R., Murphy, K., and Gaywood, M. (2005). Lake Habitat Suitability for the Rare European Macrophyte Najas Flexilis (Willd.) Rostk & Schmidt, Aquatic Conservation: Marine and Freshwater Ecosystems, 15(3), 227-241. https://doi.org/10.1002/aqc.673
  35. Woo, H. S., Lee, J. W., and Kim, K. H. (1998). Development of a Method for Determination of Instream Flow Needs Required for Fish Habitat Conservation-Application to the Keum River, Journal of the Korean Society of Civil Engineers, 18(2-4), 339-339. [Korean Literature]
  36. Wootton, R. J. (1990). Ecology of Teleost Fishes, Chapman and Hall, London, 1-404.