DOI QR코드

DOI QR Code

Isolation of copper-resistant bacteria with plant growth promoting capability

식물 생장을 촉진할 수 있는 구리 내성 세균의 분리

  • Kim, Min-Ju (Department of Biological Sciences, Kangwon National University) ;
  • Song, Hong-Gyu (Department of Biological Sciences, Kangwon National University)
  • Received : 2017.09.04
  • Accepted : 2017.10.26
  • Published : 2017.12.31

Abstract

Some rhizobacteria were isolated, that have copper resistance and can confer copper resistance to plants allowing growth under copper stress. Isolated strains Pseudomonas veronii MS1 and P. migulae MS2 produced 0.13 and 0.26 mmol/ml of siderophore, that is a metal-chelating agent, and also showed 64.6 and 77.9% of biosorption ability for Cu in 20 mg/L Cu solution, respectively. Copper can catalyze a formation of harmful free radicals, which may cause oxidative stress in organisms. Removal activity of 1,1-diphenyl-2-picryl hydrazyl radical and antioxidant capacity of strains MS1 and MS2 increased up to 82.6 and 78.1%, respectively compared to those of control at 24 h of incubation. They exhibited 7.10 and $6.42{\mu}mol$ ${\alpha}$-ketobutyrate mg/h of 1-aminocyclopropane-1-carboxylic acid deaminase activity, respectively, which reduced levels of stress hormone, ethylene in plants, and also produced indole-3-acetic acid and salicyclic acid that can help plant growth under abiotic stress. All these results indicated that these copper-resistant rhizobacteria could confer copper resistance and growth promotion to plants.

구리 스트레스를 받는 식물에 구리 내성을 부여하며 생장을 촉진할 수 있는 여러 구리 내성 근권세균을 분리하였다. 분리균주 Pseudomonas veronii MS1과 P. migulae MS2는 금속 킬레이트제인 siderophore를 각각 0.13과 0.26 mmol/ml 생성하였으며 또한 20 mg/L Cu 수용액에서 각각 64.6과 77.9%의 구리에 대한 생물흡착능을 나타내었다. 구리는 생물체에서 산화스트레스를 유발할 수 있는 유해한 자유 라디칼 형성을 유도할 수 있다. MS1과 MS2 균주의 1,1-diphenyl-2-picryl hydrazyl 라디칼 제거능과 항산화능은 24시간 배양 후 대조군에 비해 각각 82.6과 78.1% 증가하였다. 이들은 식물에서 스트레스 호르몬인 에틸렌의 수준을 낮추는 1-aminocyclopropane-1-carboxylic acid deaminase 활성을 각각 7.10과 $6.42{\mu}mol$ ${\alpha}$-ketobutyrate mg/h 나타내었으며 한편 비생물적 스트레스 하의 식물 생장을 도울 수 있는 indole-3-acetic acid와 salicylic acid도 생성하였다. 이 모둔 결과들은 이 구리-내성 근권세균들이 식물에 구리 내성을 부여하며 생장을 촉진할 수 있다는 것을 가리킨다.

Keywords

References

  1. Abo-Elmagd, H.I. 2014. Evaluation and optimization of antioxidant potentiality of Chaetomium madrasense AUMC 9376. J. Genet. Eng. Biotechnol. 12, 21-26. https://doi.org/10.1016/j.jgeb.2014.03.002
  2. Abou-Shanab, R.A.I., Angle, J.S., and Chaney, R.L. 2006. Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol. Biochem. 38, 2882-2889. https://doi.org/10.1016/j.soilbio.2006.04.045
  3. Andreazza, R., Pieniz, S., Wolf, L., Lee, M., Camargo, F.A.O., and Okeke, B.C. 2010. Characterization of copper bioreduction and biosorption by a highly copper resistant bacterium isolated from copper- contaminated vineyard soil. Sci. Total Environ. 408, 1501-1507. https://doi.org/10.1016/j.scitotenv.2009.12.017
  4. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Cervantes, C. and Gutierrez-Corona, F. 1994. Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol. Rev. 14, 121-137.
  6. Dell'Amico, E., Cavalca, L., and Andreoni, V. 2008. Improvement of Brassica napus growth under cadmium stress by cadmiumresistant rhizobacteria. Soil Biol. Biochem. 40, 74-84. https://doi.org/10.1016/j.soilbio.2007.06.024
  7. Garland, J.L. 1996. Patterns of potential C source utilization by rhizosphere communities. Soil Biol. Biochem. 28, 223-230. https://doi.org/10.1016/0038-0717(95)00113-1
  8. Glick, B.R., Penrose, D.M., and Li, J. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190, 63-68. https://doi.org/10.1006/jtbi.1997.0532
  9. Hong, S., Shin, K., and Lee, E. 2011. Characterization of growth inhibition and isolation of copper-resistant rhizobacteria, Alcaligenes sp. KC-1. Korean J. Microbiol. Biotechnol. 39, 182-187.
  10. Islam, F., Yasmeen, T., Ali, Q., Ali, S., Arif, M.S., Hussain, S., and Rizvi, H. 2014. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol. Environ. Safety 104, 285-293. https://doi.org/10.1016/j.ecoenv.2014.03.008
  11. Karadeniz, A., Topcuoglu, S.F., and Inan, S. 2006. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J. Microbiol. Biotechnol. 22, 1061-1064. https://doi.org/10.1007/s11274-005-4561-1
  12. Ma, W., Sebestianova, S.B., Sebestian, J., Burd, G.I., Guinel, F.C., and Glick, B.R. 2003. Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp. Antonie van 83, 285-291. https://doi.org/10.1023/A:1023360919140
  13. Morgan, P.W. and Drew, M.C. 1997. Ethylene and plant responses to stress. Physiol. Plantarum 100, 620-630. https://doi.org/10.1111/j.1399-3054.1997.tb03068.x
  14. Nagarajkumar, M., Bhaskaran, R., and Velazhahan, R. 2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res. 159, 73-81. https://doi.org/10.1016/j.micres.2004.01.005
  15. Palleroni, N. 2005. Genus I. Pseudomonas, pp. 323-379. In Brenner, D., Krieg, N., and Staley, J. (eds.), The proteobacteria, Part B The Gammaproteobacteria. Bergey's Manual of Systematic Bacteriology 2nd ed. Vol. 2, Springer, NY, USA.
  16. Pandey, S., Ghosh P.K., Ghosh, S., De, T.K., and Maiti, T.K. 2013. Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J. Microbiol. 51, 11-17. https://doi.org/10.1007/s12275-013-2330-7
  17. Penrose, D.M. and Glick, B.R. 2003. Methods for isolating and characterizing ACC deaminase‐containing plant growth‐promoting rhizobacteria. Physiol. Plantarum 118, 10-15. https://doi.org/10.1034/j.1399-3054.2003.00086.x
  18. Pilet, P. and Saugy, M. 1987. Effect on root growth of endogenous and applied IAA and ABA. Plant Physiol. 83, 33-38. https://doi.org/10.1104/pp.83.1.33
  19. Schwyn, B. and Neilands, J.B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  20. Silva, R.M.P., Rodríguez, A.A., De Oca, J.M.G., and Moreno, D.C. 2009. Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresour. Technol. 100, 1533-1538. https://doi.org/10.1016/j.biortech.2008.06.057
  21. Xia, Y., Qi, Y., Yuan, Y., Wang, G., Cui, J., Chen, Y., and Shen, Z. 2012. Overexpression of Elsholtzia haichowensis metallothionein 1 (EhMT1) in tobacco plants enhances copper tolerance and accumulation in root cytoplasm and decreases hydrogen peroxide production. J. Hazard. Mat. 233, 65-71.
  22. Ye, J., Yin, H., Xie, D., Peng, H., Huang, J., and Liang, W. 2013. Copper biosorption and ions release by Stenotrophomonas maltophilia in the presence of benzo[a]pyrene. Chem. Eng. J. 219, 1-9. https://doi.org/10.1016/j.cej.2012.12.093
  23. Yusuf, M., Hasan, S.A., Ali, B., Hayat, S., Fariduddin, Q., and Ahmad, A. 2008. Effect of salicylic acid on salinity‐induced changes in Brassica juncea. J. Int. Plant Biol. 50, 1096-1102. https://doi.org/10.1111/j.1744-7909.2008.00697.x
  24. Zhai, Q., Yin, R., Yu, L., Wang, G., Tian, F., Yu, R., and Chen, W. 2015. Screening of lactic acid bacteria with potential protective effects against cadmium toxicity. Food Control 54, 23-30. https://doi.org/10.1016/j.foodcont.2015.01.037
  25. Zhang, S., Moyne, A.L., Reddy, M.S., and Kloepper, J.W. 2002. The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biological Control 25, 288-296. https://doi.org/10.1016/S1049-9644(02)00108-1