DOI QR코드

DOI QR Code

Diversity and physiological properties of soil actinobacteria in Ulleung Island

울릉도 유래 토양 방선균의 다양성과 생리활성

  • Yun, Bo-Ram (Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Roh, Su Gwon (Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Kim, Seung Bum (Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University)
  • 윤보람 (충남대학교 미생물 분자생명과학과) ;
  • 노수권 (충남대학교 미생물 분자생명과학과) ;
  • 김승범 (충남대학교 미생물 분자생명과학과)
  • Received : 2017.08.11
  • Accepted : 2017.10.22
  • Published : 2017.12.31

Abstract

Actinobacteria tolerating extreme conditions can be a rich source of bioactive compounds and enzymes. In this study filamentous actinobacteria were isolated from soils of Ulleung Island, and their physiological properties were examined. Soil samples were collected, serially diluted and spread on various agar media. The average viable counts of total bacteria were $1.28{\times}10^7CFU/g$ for soil sample 1 (ULS1) and $2.05{\times}10^7CFU/g$ for soil sample 2 (ULS2). As a result, 34 strains of actinobacteria were isolated and assigned to the genera Streptomyces (16 strains), Isoptericola (5 strains), Rhodococcus (4 strains), Agromyces (3 strains), Micrococcus (2 strains), Arthrobacter (1 strain), Williamsia (1 strain), Microbacterium (1 strain), and Oerskovia (1 strain) based on 16S rRNA gene sequence analysis. Enzyme activity and plant growth promoting potential were tested for representative isolates. Multiple strains of Streptomyces degraded starch, casein and Tween 80. As for plant growth promoting potential, strains of Oerskovia, Williamsia, Isoptericola, and Streptomyces solubilized phosphate, and those of Agromyces, Oerskovia, Micrococcus, Rhodococcus, Streptomyces, and Isoptericola produced 3-indole-acetic acid (IAA), respectively. Selected strains of Streptomyces exhibited strong antagonistic activity against Staphylococcus aureus and Bacillus subtilis as well as Candida albicans. This study confirms that actinobacteria from Ulleung Island can be a good source of novel bioactive compounds.

본 연구에서는 경상북도 울릉군에서 분리한 토양 방선균에 대해 생리학적 특징과 다양성에 대해 연구하였다. ULS1 및 ULS2로 명명한 2개의 토양 시료를 채취하여 다양한 배지에 배양하여 분리하였으며, 평균 생균수는 ULS1 토양은 $1.28{\times}10^7CFU/g$, ULS2 토양은 $2.05{\times}10^7CFU/g$였다. 16S rRNA 유전자에 기반한 염기서열 분석 결과, 총 9개의 속에서 34개의 균주가 분리되었으며 해당 속은 Streptomyces (16 균주), Isoptericola (5 균주), Rhodococcus (4 균주), Agromyces (3 균주), Micrococcus (2 균주), Arthrobacter (1 균주), Williamsia (1 균주), Microbacterium (1 균주) 및 Oerskovia (1 균주)에 속하는 것을 알 수 있었다. 다양한 효소활성과 식물 생장 촉진 활성 측정 결과, 전체의 58.8%가 단백질 분해 활성을, 79.4%가 Tween 80 분해 활성을, 그리고 61.8%가 DNA 분해 활성을 각각 가지는 것으로 나타났다. Oerskovia, Williamsia, Isoptericola 및 Streptomyces 속에 속하는 분리주들로부터 인을 가용화시키는 능력을 확인할 수 있었으며, Agromyces, Oerskovia, Micrococcus, Rhodococcus, Streptomyces 및 Isoptericola 속에 속하는 분리주들은 식물호르몬인 3-indole-acetic acid (IAA)를 생산하는 것을 확인할 수 있었다. Streptomyces 속에 속하는 분리주들은 Candida albicans 뿐만 아니라 Staphylococcus aureus와 Bacillus subtilis에 항생활성을 나타내었다. 본 연구는 독특한 생태계를 구성하는 울릉도 지역의 토양 방선균 다양성 및 생리 활성에 대한 최초의 연구로서 의미를 가지며, 새로운 유용 생리 활성 물질의 좋은 원천이 될 것이라 사료된다.

Keywords

References

  1. Atalan, E., Manifio, G.P., Ward, A.C., Kroppenstedt, R.M., and Goodfellow, M. 2000. Biosystematic studies on novel streptomycetes from soil. Antonie van Leeuwenhoek 77, 337-353. https://doi.org/10.1023/A:1002682728517
  2. Balachandran, C., Duraipandiyan, V., and Ignacimuthu, S. 2012. Purification and characterization of protease enzyme from actinomycetes and its cytotoxic effect on cancer cell line (A549). Asian Pac. J. Trop. Biomed. 2, 392-400. https://doi.org/10.1016/S2221-1691(12)60195-6
  3. Busarakam, K., Girard, G., and Labeda, D. 2014. Streptomyces leeuwenhoekii sp. nov., the producer of chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees. Antonie van Leeuwenhoek 105, 849-861. https://doi.org/10.1007/s10482-014-0139-y
  4. Criquet, S. 2002. Measurement and characterization of cellulase activity in sclerophyllous forest litter. J. Microbiol. Method 50, 165-173. https://doi.org/10.1016/S0167-7012(02)00028-3
  5. Dasari, V., Muthyala, K., Nikku, M., and Donthireddy, S. 2012. Novel pyridinium compound from marine actinomycete, Amycolatopsis alba var. nov. DVR D4 showing antimicrobial and cytotoxic activities in vitro. Microbiol. Res. 167, 346-351. https://doi.org/10.1016/j.micres.2011.12.003
  6. Demain, A. and Sanchez, S. 2009. Microbial drug discovery: 80 years of progress. J. Antibiot. 62, 5-16. https://doi.org/10.1038/ja.2008.16
  7. Gesheva, V. and Gesheva, R. 2000. Physiological and antagonistic potential of actinomycetes from loquat rhizosphere. Microbiol. Res. 155, 133-135. https://doi.org/10.1016/S0944-5013(00)80049-X
  8. Glickmann, E. and Dessaux, Y. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61, 793-796.
  9. Goodfellow, M. 2012. Class I. Actinobacteria stackebrandt, rainey and ward-rainey 1997, 483. pp. 34-1967. In Goodfellow, M., Kampfer, R., Busse, H.J., Trujillo, M.E., Suzuki, K.I., Ludwig, W., and Whitman, W.B. (eds.) Bergey's Manual of Systematic Bacteriology, 2nd ed. Springer, New York, USA.
  10. Han, S.I. 2015. Phylogenetic characterization of bacterial populations in different layers of oak forest soil. Korean J. Microbiol. 51, 133-140. https://doi.org/10.7845/kjm.2015.5017
  11. Han, S.I., Cho, M.H., and Whang, K.S. 2008. Comparison of phylogenetic characteristics of bacterial populations in a Quercus and pine humus forest soil. Korean J. Microbiol. 44, 237-243.
  12. Jeon, Y.S., Lee, K., Park, S.C., Kim, B.S., Cho, Y.J., Ha, S.M., and Chun, J. 2014. EzEditor: a versatile sequence alignment editor for both rRNA-and protein-coding genes. Int. J. Syst. Evol. Microbiol. 64, 689-691. https://doi.org/10.1099/ijs.0.059360-0
  13. Jukes, T.H. and Cantor, C.R. 1969. Evolution of protein molecules, pp. 21-132. In Munro, H.N. (ed.), Mammalian Protein Metabolism. Academic Press, New York, USA.
  14. Khamma, S., Yokota, A., and Lumyong, S. 2008. Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. Microbiol. Res. 25, 649-655.
  15. Kim, O.S., Cho, Y.J., Lee, K.H., Yoon, S.H., Kim, M.C., Na, H.S., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H.N., et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721. https://doi.org/10.1099/ijs.0.038075-0
  16. Kim, T.S., Han, J.H., Joung, Y.C., and Kim, S.B. 2014. Conyzicola lurida gen. nov., sp. nov., isolated from the root of Conyza canadensis. Int. J. Syst. Evol. Microbiol. 64, 2753-2757. https://doi.org/10.1099/ijs.0.056754-0
  17. Kumar, S.M., Dhahagani, K., Chakkaravarthi, G., Anitha, K., Rajesh, J., Ramu, A., and Rajagopal, G. 2014. Synthesis and spectral characterization of Schiff base complexes of Cu(II), Co(II), Zn(II) and VO(IV) containing 4-(4-aminophenyl)morpholine derivatives: antimicrobial evaluation and anticancer studies. Spectrochim. Acta Part A Mol. Biomol. Spetrosc. 117, 87-94. https://doi.org/10.1016/j.saa.2013.07.101
  18. Leong, J. 1996. Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu. Rev. Phytopathol. 24, 187-209.
  19. Ouhdouch, Y. and Barakate, M. 2001. Actinomycetes of moroccan habitats: isolation and screening for antifungal activities. Eur. J. Soil Biol. 37, 69-74. https://doi.org/10.1016/S1164-5563(01)01069-X
  20. Pandey, A. and Palni, L.M.S. 2007. The rhizosphere effect in trees of the Indian Central Himalaya with special reference to altitude. Appl. Ecol. Environ. Res. 5, 93-102.
  21. Park, D.J., Lee, S.H., and Kim, C.J. 1998. Seasonal change of microbial population in the field soil. Korean J. Microbiol. 34, 144-148.
  22. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  23. Schwyn, B. and Neilands, J.B. 1997. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 46-56.
  24. Shirling, E.B. and Gottlieb, D. 1966. Methods for characterization of Streptomyces species 1. Int. J. Syst. Evol. Microbiol. 16, 313-340.
  25. Sulbaran, M., Pérez, E., Ball, M., and Bahsas, A. 2009. Characterization of the mineral phosphate-solubilizing activity of Pantoea aglomerans MMB051 isolated from an iron-rich soil in southeastern Venezuela (Bolívar State). Mol. Biol. Evol. 58, 378-383.
  26. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  27. Teachowisan, T., Peberdy, J.F., and Lumyong, S. 2003. Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J. Microbiol. Biotechnol. 19, 381-385. https://doi.org/10.1023/A:1023901107182
  28. Tewtrakul, S. and Subhadhirasakul, S. 2007. Anti-allergic activity of some selected plants in the Zingiberaceae family. J. Ethnopharmacol. 109, 535-538. https://doi.org/10.1016/j.jep.2006.08.010
  29. Thangapandian, V., Ponmuragan, P., and Ponmuragan, K. 2007. Actinomycetes diversity in the rhizosphere soil of different medicinal plants in Kolly Hills Termilnadu, India, for secondary metabolite production. Asian J. Plant Sci. 6, 66-70. https://doi.org/10.3923/ajps.2007.66.70