References
- Alibeigloo, A. (2016), "Thermoelastic analysis of functionally graded carbon nanotube reinforced composite cylindrical panel embedded in piezoelectric sensor and actuator layers", Compos. Part B: Eng., 98, 225-243. https://doi.org/10.1016/j.compositesb.2016.05.010
- Cao, V.V. and Ronagh, H.R. (2014), "Reducing the potential seismic damage of reinforced concrete frames using plastic hinge relocation by FRP", Compos. Part B: Eng., 60, 688-696. https://doi.org/10.1016/j.compositesb.2013.12.048
- Changwang, Y., Jinqing, J. and Ju, Z. (2010), "Seismic behavior of steel reinforced ultra high strength concrete column and reinforced concrete beam connection", Trans. Tianjin Univ., 16, 309-316. https://doi.org/10.1007/s12209-010-1344-z
- Cheng, C. and Chen, C. (2004), Seismic behavior of steel beam and reinforced concrete column connections", J. Constr. Steel Res., 61, 587-606.
- Choi, S.W., Yousok, K. and Park, H.S. (2014), "Multi-objective seismic retrofit method for using FRP jackets in shear-critical reinforced concrete frames", Compos. Part B: Eng., 56, 207-216. https://doi.org/10.1016/j.compositesb.2013.08.049
- Davar, A., Khalili, S.M.R. and Malekzadeh Fard, K. (2013), "Dynamic response of functionally graded circular cylindrical shells subjected to radial impulse load", Int. J. Mech. Mater.Des., 9, 65-81. https://doi.org/10.1007/s10999-012-9206-6
- Feng, Ch., Kitipornchai, S. and Yang, J. (2017), "Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed grapheneplatelets (GPLs)", Compos. Part B: Eng., 110, 132-140. https://doi.org/10.1016/j.compositesb.2016.11.024
- Formica, G., Lacarbonara, W. and Alessi, R. (2010), "Vibrations of carbon nanotube reinforced composites", J. Sound Vib., 329, 1875-1889. https://doi.org/10.1016/j.jsv.2009.11.020
- Ghorbanpour Arani, A., Haghparast, E., KhoddamiMaraghi, Z. and Amir, S. (2015), "Static stress analysis of carbon nano-tube reinforced composite (CNTRC) cylinder under non-axisymmetric thermo-mechanical loads and uniform electro-magnetic fields", Compos. Part B: Eng., 68, 136-145. https://doi.org/10.1016/j.compositesb.2014.08.036
- Jafarian Arani, A. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17, 567-578. https://doi.org/10.12989/cac.2016.17.5.567
- Ji, X., Zhang, M., Kang, H., Qian, J. and Hu, H. (2014), "Effect of cumulative seismic damage to steel tube-reinforced concrete composite columns", Eartq. Struct., 7, 179-200. https://doi.org/10.12989/eas.2014.7.2.179
- Kolahchi, R., RabaniBidgoli, M., Beygipoor, Gh. and Fakhar, M.H. (2013), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforcedmicroplates subjected to magnetic field", J. Mech. Sci. Tech., 5, 2342-2355.
- Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
- Lei, Z.X., Zhang, L.W., Liew, K.M. andYu, J.L. (2014), "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035
- Liang, X. and Parra-Montesinos, G.J. (2004), "Seismic behavior of reinforced concrete column-steel beam subassemblies and frame systems", J .Struct. Eng., 130, 310:319.
- Liew, K.M., Lei, Z.X., Yu, J.L. and Zhang, L.W. (2014), "Postbucklingof carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach", Comput. Meth. Appl. Mech. Eng., 268, 1-17. https://doi.org/10.1016/j.cma.2013.09.001
- Liu, Z.Q., Xue, J.Y. and Zhao, H.T. (2016), "Seismic behavior of steel reinforced concrete special-shaped column-beam joints", Eartq. Struct., 11, 665-680. https://doi.org/10.12989/eas.2016.11.4.665
- Matsuna, H. (2007), "Vibration and buckling of cross-ply laminated composite circular cylindrical shells according to a global higher-order theory", Int. J. Mech.Sci., 49, 1060-1075. https://doi.org/10.1016/j.ijmecsci.2006.11.008
- Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metall. Mater., 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
- Shen, H.S. and Yang, D.Q. (2014), "Nonlinear vibration of anisotropic laminated cylindrical shells with piezoelectric fiber reinforced composite actuators", Ocean Eng., 80, 36-49. https://doi.org/10.1016/j.oceaneng.2014.01.016
- Shu, C. and Xue, H. (1997), "Explicit computations ofweighting coefficients in the harmonic differential quadrature", J. Sound Vib., 204(3), 549-555. https://doi.org/10.1006/jsvi.1996.0894
- Simsek, M. (2010), "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load", Compos. Struct., 92, 2532-2546. https://doi.org/10.1016/j.compstruct.2010.02.008
- Simsek, M. and Reddy, J.N. (2013), "A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory", Compos. Struct., 101, 47-58. https://doi.org/10.1016/j.compstruct.2013.01.017
- Wuite, J. and Adali, S. (2005), "Deflection and stress behaviour of nanocomposite reinforced beams using a multiscale analysis", Compos. Struct., 71, 388-396. https://doi.org/10.1016/j.compstruct.2005.09.011
- Zamani, A., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20, 671-682.
-
Zarei, M.Sh., Kolahchi, R., Hajmohammad, M.H. and Maleki, M. (2017), "Seismic response of underwaterfluid-conveying concrete pipes reinforced with
$SiO_2$ nanoparticles and fiber reinforced polymer (FRP) layer", Soil Dyn. Earthq. Eng., 103, 76-85. https://doi.org/10.1016/j.soildyn.2017.09.009