Acknowledgement
Supported by : National Natural Science Foundation of China
References
- ABAQUS/Standard User's Manual Version 5.8 (1998), Hibbit, Karlsson Sorensen Inc., USA.
- Fast lagrangian analysis of continua version 4.0. (2000).
- An, X.H., Shawky, A.A. and Maekawa, K. (1997a), "The collapse mechanism of a subway during the Great Hanshin earthquake", Cement Concrete Compos., 19(3), 241-257. https://doi.org/10.1016/S0958-9465(97)00014-0
- An, X., Shawky A.A. and Maekawa, K. (1997b), "The collapse mechanism of a subway station during the Great Hanshin earthquake", Cement Concrete Compos., 19, 241-57. https://doi.org/10.1016/S0958-9465(97)00014-0
- Berenger, J.P. (1994), "A perfectly matched layer for the absorption of electromagnetic waves", J. Comput. Phys., 114(2), 185-200. https://doi.org/10.1006/jcph.1994.1159
- Birk, C. and Behnke, R. (2012), "A modified scaled boundary finite element method for three-dimensional dynamic soil-structure interaction in layered soil", Int. J. Numer. Meth. Eng., 89(3), 371-402. https://doi.org/10.1002/nme.3251
- Chen, S., Tang, G., Liu, Q. and Ding, H. (2010), "A direct time-domain method for analysis of three-dimensional soil-structure dynamic interaction", Earthq. Eng. Eng. Vib., 30(2), 24-31. (in Chinese)
- Chen, X.J., Birk, C. and Song, C. (2015), "Time-domain analysis of wave propagation in 3-D unbounded domains by the scaled boundary finite element method", Soil Dyn. Earthq. Eng., 75, 171- 182. https://doi.org/10.1016/j.soildyn.2015.04.009
- Deeks, A.J. and Randolph, M.F. (1994), "Axisymmetric time-domain transmitting boundaries", Am. Soc. Civil Eng., 120(1), 25-42.
- Du, X.L. and Zhao, M. (2010), "Stability and identification for rational approximation of frequency response function of unbounded soil", Earthq. Eng. Struct. Dyn., 39(2), 165-186. https://doi.org/10.1002/eqe.936
- Du, X.L., Zhao, M. and Wang, J.T. (2006), "A stress artificial boundary in FEA for near-field wave problem", Chin. J. Theor. Appl. Mech., 38(1), 49-56.
- Du, X.L. and Zhao, M. (2010), "A local time-domain transmitting boundary for simulating cylindrical elastic wave propagation in infinite media", Soil Dyn. Earthq. Eng., 30(10), 937-946. https://doi.org/10.1016/j.soildyn.2010.04.004
- Galvin, P. and Romero, A. (2014), "A MATLAB toolbox for soil-structure interaction analysis with finite and boundary elements", Soil Dyn. Earthq. Eng., 57(2), 10-14. https://doi.org/10.1016/j.soildyn.2013.10.009
- Ghandil, M. and Behnamfar, F. (2015), "The near-field method for dynamic analysis of structures on soft soils including inelastic soil-structure interaction", Soil Dyn. Earthq. Eng., 75, 1-17. https://doi.org/10.1016/j.soildyn.2015.03.018
- Givoli, D. (1999), "Recent advances in the DtN FE method". Arch. Comput. Meth. Eng., 2(6), 71-116.
- Givoli, D. (2004), "High-order local non-reflecting boundary conditions: a review", Wave Motion, 4(39), 319-326.
- Hall, W.S. and Oliveto, G. (2009), Boundary Element Methods for Soil-Structure Interaction, Springer Netherlands.
- Haskell, N.A. (1951), "The dispersion of surface waves on multilayered media", Bull. Seismol. Soc. Am., 43(1), 17-34.
- Hudson, M., Idriss, I.M. and Beikae, M. (2003), User's Manual for QUAD4M.
- Kausel, E. (1994), "Thin-layer method: formulation in the time domain", Int. J. Numer. Meth. Eng., 37(6), 927-941. https://doi.org/10.1002/nme.1620370604
- Kausel, E. and Roesset, J.M. (1981), "Stiffness matrices for layered soils", Bull. Seismol. Soc. Am., 6(71), 1743-1761.
- Liao, Z.P. (1996), "Extrapolation nonreflecting boundary conditions", Wave Motion, 24, 117-138. https://doi.org/10.1016/0165-2125(96)00010-8
- Liao, Z.P. and Wong, H.L. (1984), "A transmitting boundary for the numerical simulation of elastic wave propagation", Soil Dyn. Earthq. Eng., 84(3).
- Liu, J.B., Du, Y.X., Du, X.L., Wang, Z.Y. and Wu, J. (2006), "3D viscous-spring artif icial boundary in time domain", Earthq. Eng. Eng. Vib., 1(5), 93-101.
- Liu, J.B. and Wang, Y. (2006), "A 1D time-domain method for out-Plane wave motions in a layered half-space", Chin. J. Theor. Appl. Mech., 2(38), 219-225.
- Liu, J.B. and Wang, Y. (2007), "A 1D time-domain method for in-Plane wave motions in a layered half-space", Eng. Mech., 27(7), 16-22.
- Lysmer, J. (1969), "Finite dynamic model for infinite media", J. Eng. Mech. Div., 95, 859-878.
- Lysmer, J., Ostadan, F. and Tabatabaie, M. (2000), SASSI: A System for Analysis of Soil-Structure Interaction, CA.
- Lysmer, J., Udaka, T., Tsai, C. and Seed, H.B. (1975), FLUSH a Computer Program for Approximate 3-D Analysis of Soil-Structure Interaction Problems.
- Nielsen, A.H. (2006), "Absorbing boundary conditions for seismic analysis in ABAQUS", 2006 ABAQUS Users' Conference, 359-376.
- Parra-Montesinos, G.J., Bobet, A. and Ramirez, J.A. (2006), "Evaluation of soil-structure interaction and structural collapse in Daikai subway station during Kobe earthquake", ACI Struct. J., 103(1), 113.
- Saouma, V., Miura, F., Lebon, G. and Yagome, Y. (2011), "A simplified 3D model for soil-structure interaction with radiation damping and free field input", Bull. Earthq. Eng., 5(9), 1387-1402.
- Song, C.M. and Wolf, J.P. (1997), "The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics", Comput. Meth. Appl. Mech. Eng., 97(147), 329-355.
- Sun, L. and Pan, Y. (2013), "High-order thin layer method for viscoelastic wave propagation in stratified media", Comput. Meth. Appl. Mech. Eng., 257(257), 65-76. https://doi.org/10.1016/j.cma.2013.01.004
- Takano, S., Yasui, Y. and Takeda, T. (1988), "The new method to calculate the response of layered half-space subjected to obliquely incident body wave", Proceeding of Ninth World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan.
- Thomson, W.T. (1950), "Transmission of elastic waves through a stratified solid medium", J. Appl. Phys., 2(21), 89-93.
- Wolf, J.P. (1985), Dynamic Soil-Structure Interaction, Prentice Hall, New Jersey.
- Wolf, J.P. (1988), Soil-Structure-Interaction Analysis in Time Domain, Prentice Hall, New Jersey.
- Wolf, J.P. (2003), The Scaled Boundary Finite Element Method, John Wiley & Sons Inc.
- Wolf, J.P. and Obernhuber, P. (1982), "Free-field response from inclined SH-waves and LOVE-waves", Earthq. Eng. Struct. Dyn., 10, 823-845. https://doi.org/10.1002/eqe.4290100607
- Wolf, J.P. and Obernhuber, P. (1982), "Free-field response from inclined SV- and P-waves and RAYLEIGH-waves", Earthq. Eng. Struct. Dyn., 10, 847-869. https://doi.org/10.1002/eqe.4290100608
- Wolf, J.P. and Obernhuber, P. (1983), "In-plane free-field response of actual sites", Earthq. Eng. Struct. Dyn., 11, 121-134. https://doi.org/10.1002/eqe.4290110110
- Zhang, C., Chen, X. and Wang, G. (1999), "A coupling model of FE-BE-IE-IBE for non-linear layered soil-structure interactions", Earthq. Eng. Struct. Dyn., 28, 421-441. https://doi.org/10.1002/(SICI)1096-9845(199904)28:4<421::AID-EQE824>3.0.CO;2-J
- Zhang, X., Wegner, J. and Haddow, J. (1999), "Three-dimensional dynamic soil-structure interactions analysis in the time domain", Earthq. Eng. Struct. Dyn., 28, 1501-1524. https://doi.org/10.1002/(SICI)1096-9845(199912)28:12<1501::AID-EQE878>3.0.CO;2-8
- Zhao, C.B. (2009), Dynamic and Transient Infinite Elements: Theory and Geophysical, Geotechnical and Geoenvironmental Applications, Spinger, Berlin.
- Zhao, M. (2011), "Explicit finite element artificial boundary scheme for transient scalar waves in two-dimensional unbounded waveguide", Int. J. Numer. Meth. Eng., 11(87), 1074-1104.
- Zhao, M., Yin, H., Du, X.L., Liu, J.B. and Liang, L. (2015), "1D finite element artificial boundary method for layered half space site response from obliquely incident earthquake", Earthq. Struct., 1(9), 173-194.
- Zhuang, H.Y., Hu, Z.H., Wang, X.J. and Chen, G.X. (2015), "Seismic responses of a large underground structure in liquefied soils by FEM numerical modeling", Bull. Earthq. Earthq. Eng., 13(12), 3645-3668 https://doi.org/10.1007/s10518-015-9790-6
Cited by
- Modification Research of the Internal Substructure Method for Seismic Wave Input in Deep Underground Structure-Soil Systems vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/5926410