DOI QR코드

DOI QR Code

위어 설치각도에 따른 흐름특성 및 하도 변화의 실험적 분석

Experimental Analysis of Flow Characteristics and Bed Changes Over Oblique Weirs

  • 장창래 (한국교통대학교 토목공학과) ;
  • 김기정 (한국교통대학교 토목공학과)
  • Jang, Chang-Lae (Department of Civil Engineering, Korea National University of Transportation) ;
  • Kim, Gi Jung (Department of Civil Engineering, Korea National University of Transportation)
  • 투고 : 2017.11.29
  • 심사 : 2017.12.08
  • 발행 : 2017.12.31

초록

본 연구에서는 실내실험을 통해 위어의 설치 각도 변화에 대한 위어 상하류에서 흐름특성 변화와 하도 변화를 정량적으로 분석하였다. 위어의 설치 각이 증가함에 따라 위어의 길이는 증가하지만, 위어의 유효길이는 감소하였다. 위어 상류에서는 유사가 퇴적되어 배수가 형성되는 지점에서 델타가 발달하고, 하류로 이동하였다. 델타의 이동속도는 위어에 가까워질수록 감소하며, 크기는 증가하였다. 무차원 위어의 길이가 증가함에 따라, 무차원 사주의 파장이 감소하고, 무차원 사주의 파고는 증가하였다. 무차원 사주의 파장이 증가함에 따라 무차원 사주의 파고는 감소하였다.

In this study, the flow characteristics and bed changes in the upstream and downstream of weirs with the variation of the weir angels are investigated quantitatively through the laboratory experiments. As the angle of weir increases, the effective weir length decreases. Delta is developed by the sediments inflow upstream and migrates downstream. Delta migration speed decreases as it approaches to the weir upstream, and the size is getting big. As the dimensionless weir length increases, the dimensionless wave length decreases at the downstream of the weir. However, the dimensionless bar height decreases. The dimensionless wavelength increases with the bar height downstream from the weir.

키워드

참고문헌

  1. Borghei, S.M., Vatannia, Z., Ghodsian, M. and Jalili, M.R. (2003). Oblique ractangular sharp-crested weir. Proceeding of the Institution of Civil Engineers (ICE). 156 (WM2): 185-191.
  2. Borghei, S.M., Kabiri-Samani, A.R. and Nekoee, N. (2006). Oblique weir equation using incomplete self-similarity. Canadian Journal of Civil Engineering 33(10): 1241-1250, doi 10.1139/l06-071.
  3. Crosato, A. and Mosselman, E. (2009). Simple physics-based predictor for the number of river bars and the transition between meandering and braiding. Water Resour. Res., 45, W03424, doi:10.1029/2008WR007242.
  4. Ikeda, S. (1984). Prediction of alternate bar wavelength and height. J. Hydraul. Engrng., ASCE 110(4): 371-386. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:4(371)
  5. Jang, C.-L. and Shimizu, Y. (2005). Numerical simulation of the behavior of alternate bars with different bank strength. Journal of Hydraulic Research 43(6): 595-611. https://doi.org/10.1080/00221680509500379
  6. Kabiri-Samani, A.R. Ansari., A. and Borghei S.M. (2010). Hydraulic behavior of flow over an oblique weir, Journal of Hydraulic Research, 48(5): 669-673. https://doi.org/10.1080/00221686.2010.507358
  7. Lauchlan, C. (2004). Experimental investigation of bed-load and suspended-load transport over weirs. J. Hydraulic Res. 42(5): 549-555.
  8. Seminara, G. and Tubino, M. (1989). Alternate bar and meandering: Free, forced and mixed interactions, in River Meandering, Water Res. Monogr., vol. 12, edited by S. Ikeda and G. Parker, AGU, Washington, D.C., pp. 267-320.
  9. Tingey S.E. (2011). Discharge coefficients of oblique weir, MSc. Thesis, Utah State University.
  10. Tuyen, N.B. (2007), Flow over oblique weir, MSc. Thesis, Delft university of technology.
  11. Wols, B., Wim Uijttewaal, W., Robert-Jan Labeur, R.-J. and Stelling, G. (2006). Rapidly varying flow over oblique weirs. Proc. International Conference on HydroScience and Engineering, ISBN:0977447405.