DOI QR코드

DOI QR Code

Pullout Parameter According to the Length of Spreading of Extensible Geogrid Reinforcement

신장성 지오그리드 보강재의 포설길이에 따른 인발정수

  • Received : 2017.10.18
  • Accepted : 2017.12.27
  • Published : 2017.12.30

Abstract

In a reinforced soil structure, the interaction between soil and an reinforcement occurs due to the frictional resistance on the contact surface between them or the pullout resistance of the reinforcement. Generally, a pullout test is conducted to measure pullout parameters of extensible geogrids. The factors affecting the pullout parameters in a pullout test include a density of backfill, shape of reinforcements, overburden pressure, length of spread reinforcements, and so on. The purpose of this study is to suggest a length of the spreading of an extensible reinforcement that can be used in estimating suitable pullout parameters of a pullout test. To this end, a pullout test was carried out. For the test, the length of spreading of an extensible reinforcement was set as 32 cm, 52 cm, 72 cm, and 100 cm, and effects of the lengths on pullout parameters were analyzed. As a result of the pullout test, it was confirmed that the frictional resistance between the soil and the reinforcement increases with the increase of the length of the reinforcement.

보강토 구조물에서 흙과 보강재 상호작용은 접촉면 마찰저항 또는 보강재 인발저항에 의해 발생되며, 신장성 지오그리드 보강재의 인발정수를 측정하기 위하여 일반적으로 인발시험을 실시한다. 인발시험시 인발정수에 영향을 미치는 요소는 뒷채움재의 밀도, 보강재의 형상, 토피하중, 보강재의 포설길이 등이 있다. 본 연구에서는 인발시험시 합리적인 인발정수 산정을 위한 신장성 보강재의 포설길이를 제안하고자 인발시험을 실시하였으며, 보강재 포설길이는 각각 32cm, 52cm, 72cm, 100cm로 선정하였다. 인발시험결과 보강재 포설길이에 따른 인발정수의 영향을 분석하였으며, 인발시험에서 흙과 보강재사이의 마찰저항은 보강재 포설길이가 증가할수록 증가함을 확인하였다.

Keywords

References

  1. Alimi, I., Bacot, J., Lareal, P., Long, N. T., and Schlosser, F. (1977), "Adherence between Soil and Reinforcement In situ and in the Laboratory", Proceeding of 9th ICSMFE, Vol.1, pp. 11-14.
  2. ASTM Standard D 6706-01 (2003), "Test Method for Measuring Geosynthetic Pullout Resistance in Soil", Annual Book of Standards, Vol.4, No.13, ASTM International, West Conshohoken, PA.
  3. ASTM D6706-01 (2001), Standard Test Method for Measuring Geosynthetic Pullout Resistance in Soil. ASTM International.
  4. Bacot, J., Iltis, M., Lareal, P., Paumier, T., and Sanglerat, G. (1978), "Study of the Soil Reinforcement Friction Coefficient", Proc. of ASCE Symposium on Earth Reinforcement, Pittsburgh, pp.157-185.
  5. Chang, J. C. (1974), "Earth Reinforcement Techniques", Final Report. CA-DOT-TL-2115-9-74-37, Department of Transport, California, pp.2-14.
  6. FHWA (2001), "Mechanically Stabilized Earth Walls and Reinforced Soil Slopes, Design and Construction Guidelines", FHWA Demonstration Project 82, FHWA, Washington, DC, FHWA-NHI-00-043.
  7. Kim, J. H. (2008), Development and Applicability of Multilayer Pullout apparatus System, Ph.D thesis, Sunchon National University.
  8. Naylor, D. J. and Richards, H.(1997), "Slipping Strip Analysis of Reinforced Earth", University of Wales-Swansea, Civil Engineering Report C/R/295/77, pp.27-36.
  9. Palmeira, E. M and Milligan, G. W. E.(1989), "Scale and other factors affecting the results of pullout tests of grids buried in sand", Geotechnique, Vol.39, pp.511-524. https://doi.org/10.1680/geot.1989.39.3.511
  10. Scholsser, F. and Elias, V. (1978), "Friction in Reinforced Earth", Proc. ASCE Symposium on Earth Reinforcement, Pittsburgh, pp.735-762.