DOI QR코드

DOI QR Code

Evaluation of Lateral Deformation and Vertical Stress of Geosynthetics Reinforced Walls by the Scale Model Test

축소모형실험을 통한 토목섬유 보강토옹벽의 수평변위 및 수직응력 평가

  • Cho, Sam-Deok (Geotechnical Engineering Research Institute, Korea Institute of Civil engineering and building Technology) ;
  • Lee, Kwang-Wu (Geotechnical Engineering Research Institute, Korea Institute of Civil engineering and building Technology) ;
  • You, Seung-Kyong (Dept. of Civil Engineering, Myongji College)
  • Received : 2017.11.29
  • Accepted : 2017.12.13
  • Published : 2017.12.30

Abstract

This paper presents a study of reinforced earth model wall reinforced by geosynthetics subjected to vertical surcharge. 7 types of reinforced earth model wall were constructed in the model box($100cm{\times}140cm{\times}100cm$) to assess the deformation and stress behavior of model walls according to different tensile strength and laying number of reinforcement and surcharge pressures. 3 types of geosynthetics that have different tensile strength were used as reinforcement. The test was carried out by changing the number of reinforcement to 5, 7, 9, and surcharge pressure to 50, 100, 150, 200, 250 kPa. The model test found that the maximum lateral displacements occurred at the 0.7 H (H : Wall height) position from the bottom of the model wall and vertical stress was low in the smaller surcharge pressure and the larger tensile strength of reinforcement.

보강토체 상부에 작용하는 상재하중과 보강재의 인장강도 및 포설 단수가 보강토옹벽의 변형거동에 미치는 영향을 평가하기 위해 7종류의 축소모형 보강토옹벽을 축조하여 상재하중 재하실험을 수행하였다. 축소모형 보강토옹벽은 $100cm{\times}140cm{\times}100cm$ 크기의 모형토조 내에서 1m 높이로 축조하였으며, 인장강도가 상이한 3종류의 보강재를 사용하여 포설 단수를 5단, 7단, 9단으로 변화시키고, 5종류(50, 100, 150, 200, 250kPa)의 상재하중을 단계적으로 재하하면서 전면벽체의 수평변위와 보강재의 인장변형률 및 보강토체 저면의 수직응력 등을 측정하여 분석하였다. 분석 결과, 전면벽체의 수평변위는 보강토옹벽 하단부에서 가장 작고 보강토옹벽 하단으로부터 0.7H (H : 옹벽 높이) 지점에서 가장 큰 비선형적인 형태를 보여주며, 상재하중이 작고 보강재의 인장강도가 클수록 보강재의 상대적인 보강효과가 크게 발현되어 보강토체 하부의 수직응력이 작게 나타남을 알 수 있었다.

Keywords

References

  1. Adib, M. (1995), Internal Lateral Earth Pressure in Earth Walls, PhD. dissertation, Univ. of Washington, USA, 391p.
  2. Chew, S. H. and Mitchell, J. K. (1994), "Deformation Evaluation Procedure for Reinforced Soil Walls", Fifth International Conference on Geotextiles, Geomembranes and Related Products, Singapore, Vol. 1, pp.171-176.
  3. Christopher, B. R. (1993), Deformation Response and Wall Stiffness in Relation to Reinforced Soil Wall Design, PhD. Dissertation, Purdue Uni., 354p.
  4. Christopher, B. R., Gill, S. A., Giroud, J. P., Juran, I., Mitchell, J. K., Schlosser, F., and Dunnicliff, J. (1990), Reinforced Soil Structures, Federal Highway Administration, FHWA-RD-89-043, Washington, D.C., Vol. 1, 283p., Vol. 2, 158p.
  5. Ghionna, V. N., Fioravante, I., and Vicari, M. (2002), "Full Scale Test on a Retaining Wall with Non-uniform Reinforcments", Geosynthetics-7th ICG, pp.279-282.
  6. Jewell, R. A. and Milligan, G. W, E. (1989), "Deformation Calculations for Reinforced Soil Walls", Twelfth International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Vol.2, pp.1257-1263.
  7. Jewell, R. A., (1988), "Reinforced Soil Wall Analysis and Behavior", The Application of Polymeric Reinforcement in Soil Retaining Structures,
  8. Leshchinsky, D. and Vulova, C. (2001), "Numerical Investigation of the Effects of Geosynthetic Spacing on Failure Mechanisms in MSE Block Walls", Geosynthetics International, Vol.8, No.4, pp.343-365. https://doi.org/10.1680/gein.8.0199
  9. Pinto, M.I.M. and Cousens, T.W. (1999), "Modelling a Geotextile-Reinforced Brick-faced Soil Retaining Wall", Geosynthetics International, Vol.6, No.5, pp.417-447. https://doi.org/10.1680/gein.6.0159
  10. Wong, K. S. and Broms, B. B. (1994), "Failure Modes an Model Tests of a Geotextile Reinforced Wall", Geotextiles and Geomembranes, Vol.13, pp.475-493. https://doi.org/10.1016/0266-1144(94)90009-4