DOI QR코드

DOI QR Code

Comparison of Behaviour of Straight and Curved Mechanically Stabilized Earth Walls from Numerical Analysis Results

수치해석을 통한 보강토옹벽 직선부와 곡선부의 거동 특성

  • Jung, Hyuk-Sang (Department of Railload Construction & Safety Engineering, Dongyang Univ.)
  • Received : 2017.10.27
  • Accepted : 2017.12.04
  • Published : 2017.12.30

Abstract

This paper deals with numerical analysis of behavior of curved mechanically stabilized earth(MSE) walls with geosynthetics reinforcement. Unlike typical concrete retaining walls, MSE wall enables securing stability of higher walls without being constrained by backfill height and is currently and widely used to create spaces for industrial and residential complexes. The design of MSE walls is carried out by checking external stability, similarly to the external checks of conventional retaining wall. In addition, internal stability check is mandatory. Typical stability check based on numerical analysis is done assuming 2-dimensional condition (plane strain condition). However, according to the former studies of 3-dimensional MSE wall, the most weakest part of a curved geosynthetic MSE wall is reported as the convex location, which is also identified from the studies of the laboratory model tests and field monitoring. In order to understand the behaviour of the convex location of the MSE wall, 2-dimensional analysis clearly reveals its limitation. Furthermore, laboratory model tests and field monitoring also have restriction in recognizing their behaviour and failure mechanism. In this study, 3-dimensional numerical analysis was performed to figure out the behaviour of the curved part of the geosynthetic reinforced wall, and the results of the straight-line and curved part in the numerical analysis were compared and analysed. In addition, the behaviour characteristics at each condition were compared by considering the overburden load and relative density of backfill.

본 논문은 보강토옹벽의 곡선부 거동을 수치해석으로 분석한 내용을 다루고 있다. 보강토옹벽은 토목섬유의 발전과 함께 발달해왔다. 기존의 콘크리트 옹벽과 달리 성토 높이에 제약을 받지 않고 안정성을 확보할 수 있다는 장점이 있으며, 현재 산업 및 주거단지를 형성하는데 많이 사용되고 있다. 이러한 보강토옹벽의 설계는 현재 다른 형식의 옹벽 설계와 동일하게 내 외적 안정성 검토 및 보강재의 인장력에 대한 검토를 활용하여 이루어지고 있으며, 주로 2차원 수치해석을 바탕으로 이루어지고 있다. 그러나 기존의 연구결과에 따르면, 보강토옹벽의 취약부는 곡선부로 보고되고 있으며, 이는 실내모형시험 및 피해사례에 대한 연구에서 언급된 바 있다. 보강토옹벽의 곡선부 거동을 파악하기 위한 2차원 수치해석은 그 한계점을 분명히 드러내고 있으며, 실내모형시험 및 현장시험 또한 그 거동과 파괴메커니즘을 이해하기에는 그 한계를 갖고 있다. 따라서 본 연구에서는 보강토옹벽의 곡선부의 거동을 이해하기 위해 3차원 수치해석을 수행하였으며, 수치해석에서의 직선부와 곡선부의 결과를 비교 분석하였다. 뿐만 아니라, 상재하중의 고려 여부 및 성토체의 다짐도를 달리하여 각각의 조건에서의 거동특성을 비교 분석하였다.

Keywords

References

  1. Cha Y. H., Cho, G. C., and Hong, E. S.(2016), "The numerical study on the ground settlement behavior of box type tunnel enlargement", Journal of Korean Tunnelling and Underground Space Association, Vol.18, No.1, pp.83-94. https://doi.org/10.9711/KTAJ.2016.18.1.083
  2. Das, B. M. (2010), Principles of Geotechnical Engineering, Cengage learning, USA, pp.1-666.
  3. Ki, J. S., Rew, W. H., Kim, S. K., and Chun, B. S. (2012), "A Behavior of Curve Section of Reinforced Retaining Wall by Model Test", Journal of the Korean Society of Civil Engineers, Vol.32, No.6C, pp.249-257. https://doi.org/10.12652/Ksce.2012.32.6C.249
  4. Kim, J. M. (2005), "Assessment of Connection Strength and Frictional Characteristic for The Segmental Retaining Wall Unit", KGS spring conference, March, pp.1562-1563.
  5. Kim, J. M., Lee, D. Y., and Ma, S. J. (2006), "Site Monitoring of the Retaining Wall Reinforced by Geogrids with Block Type Facings", Journal of the Korea Institute for Structural Maintenance and Inspection, Vol.10, No.1, pp.106-114.
  6. Kim, N. Y., Lee K. H., Cho N. H., and You. K. H. (2017), "A study on the occurrence of cracks in the tunnel pavement in the soil under use", Journal of Korean Tunnelling and Underground Space Association, Vol.19, No.5, pp.749-760. https://doi.org/10.9711/KTAJ.2017.19.5.749
  7. Kim, Y. S., Ko, H. W., Kim, J. H., and Lee, J. G. (2012), "Dynamic Deformation Characteristics of Joomunjin Standard Sand Using Cyclic Triaxial Test", Journal of Korean Geotechnical Society, Vol.28, No.12, pp.53-64. https://doi.org/10.7843/kgs.2012.28.12.53
  8. Lee, K. W. and Singh, A. (1971), "Relative Density and Relative Compaction", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, No.SM7, pp.1049-1052.
  9. Leshchinsky, D. and Perry, E. B. (1989), "On the Design of Geosynthetic-reinforced Walls", Geotextiles and Geomembranes, Vol.8, pp.311-323. https://doi.org/10.1016/0266-1144(89)90014-9
  10. Park C. H. and Lee S. D. (2017), "Experimental study on the ground subsidence due to the excavation of a shallow tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol.19, No.5, pp.761-778. https://doi.org/10.9711/KTAJ.2017.19.5.761
  11. Plaxis bv. (2017), "Reference Manual", Ver. 2017, pp.1-307.
  12. Yang, K. H., Zornberg, J. G., Liu, C. N., and Lin, H. D. (2012), "Stress distribution and development within geosynthetic-reinforced soil slopes", Geosynthetic International, Vol.19, No.1, pp.62-78. https://doi.org/10.1680/gein.2012.19.1.62
  13. Yoo, C. S. (2002), "Soil-Reinforced Segmental Retaining Walls in Tiered Arrangement-Case Study", KGS spring conference, pp.541-548.
  14. Yoo, C. S., Jung, H. Y., and Jung, H. S. (2005), "A Case Study in a Rainfall induced Failure of Geosynthetics-Reinforced Segmental Retaining Wall", Journal of the Korean Geosynthetics Society, Vol.4, No.1, pp.17-25.