References
- Bishop CM (2006). Pattern Recognition and Machine Learning, Springer, New York.
- Buntine WL and Weigend AS (1991). Bayesian back-propagation, Complex Systems, 5, 603-643.
- Chang L, Roberts S, and Welsh A (2017). Robust lasso regression using Tukey's biweight criterion, Technometrics, from: https://dx.doi.org/10.1080/00401706.2017.1305299
- El Ghaoui L and Lebret H (1997). Robust solutions to least-squares problems with uncertain data, SIAM Journal on Matrix Analysis and Applications, 18, 1035-1064. https://doi.org/10.1137/S0895479896298130
- Figueiredo MAT (2003). Adaptive sparseness for supervised learning, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 1150-1159. https://doi.org/10.1109/TPAMI.2003.1227989
- Hastie T, Tibshirani R, and Friedman JH (2001). The Elements of Statistical Learning: Data Mining Inference, and Prediction, Springer, New York.
- Koenker R (2005). Quantile Regression, Cambridge University Press, Cambridge.
- Lambert-Lacroix S and Zwald L (2011). Robust regression through the Huber's criterion and adaptive lasso penalty, Electronic Journal of Statistics, 5, 1015-1053. https://doi.org/10.1214/11-EJS635
- Lee A, Caron F, Doucet A, and Holmes C (2010). A hierarchical Bayesian framework for constructing sparsity-inducing priors (Technical report), University of Oxford, Oxford.
- Lee S, Shin H, and Lee SH (2016). Label-noise resistant logistic regression for functional data classification with an application to Alzheimer's disease study, Biometrics, 72, 1325-1335. https://doi.org/10.1111/biom.12504
- MacKay DJC (1995). Probable networks and plausible predictions: a review of practical Bayesian methods for supervised neural networks, Network: Computation in Neural Systems, 6, 469-505. https://doi.org/10.1088/0954-898X_6_3_011
- Maronna RA, Martin RD, and Yohai VJ (2006). Robust Statistics: Theory and Methods, Wiley, Chichester.
- Murphy KP (2012). Machine Learning: A Probabilistic Perspective, The MIT Press, Cambridge.
- Owen AB (2006). A robust hybrid of lasso and ridge regression (Technical report), Stanford University, Stanford.
- Park T and Casella G (2008). The Bayesian lasso, Journal of the American Statistical Association, 103, 681-686. https://doi.org/10.1198/016214508000000337
- Tipping ME (2001). Sparse Bayesian learning and the relevance vector machine, Journal of Machine Learning Research, 1, 211-244.
- West M (1987). On scale mixtures of normal distributions, Biometrika, 74, 646-648. https://doi.org/10.1093/biomet/74.3.646
- Zou H (2006). The adaptive lasso and its oracle properties, Journal of the American Statistical Association, 101, 1418-1429. https://doi.org/10.1198/016214506000000735
- Zou H and Li R (2008). One-step sparse estimates in nonconcave penalized likelihood models, The Annals of Statistics, 36, 1509-1533. https://doi.org/10.1214/009053607000000802