DOI QR코드

DOI QR Code

Estimation of Reward Probability in the Fronto-parietal Functional Network: An fMRI Study

  • 투고 : 2017.11.13
  • 심사 : 2017.12.07
  • 발행 : 2017.12.31

초록

We investigated the neural representation of reward probability recognition and its neural connectivity with other regions of the brain. Using functional magnetic resonance imaging (fMRI), we used a simple guessing task with different probabilities of obtaining rewards across trials to assay local and global regions processing reward probability. The results of whole brain analysis demonstrated that lateral prefrontal cortex, inferior parietal lobe, and postcentral gyrus were activated during probability-based decision making. Specifically, the higher the expected value was, the more these regions were activated. Fronto-parietal connectivity, comprising inferior parietal regions and right lateral prefrontal cortex, conjointly engaged during high reward probability recognition compared to low reward condition, regardless of whether the reward information was extrinsically presented. Finally, the result of a regression analysis identified that cortico-subcortical connectivity was strengthened during the high reward anticipation for the subjects with higher cognitive impulsivity. Our findings demonstrate that interregional functional involvement is involved in valuation based on reward probability and that personality trait such as cognitive impulsivity plays a role in modulating the connectivity among different brain regions.

키워드

참고문헌

  1. Bandura, A. (1977). Social learning theory. Englewood Cliffs, NJ: Prentice-Hall.
  2. Bach, D. R., Seymour, B., & Dolan, R. J. (2009). Neural activity associated with the passive prediction of ambiguity and risk for aversive events. Journal of Neuroscience, 29(6), 1648-1656. DOI: 10.1523/JNEUROSCI.4578-08.2009
  3. Barratt, E. S., & Patton, J. H. (1983). Impulsivity: Cognitive, behavioral, and psychophysiological correlates. In M. Zuckerman (Ed.), Biological bases of sensation seeking, impulsivity, and anxiety (pp. 77-122). Hillsdale, NJ: Lawrence Erlbaum Associates.
  4. Brett, M., Anton, J. L., Valabregue, R., & Poline, J. B. (2002). Region of interest analysis using the MarsBar toolbox for SPM 99. NeuroImage, 16(2), S497.
  5. Camara, E., Rodriguez-fornells, A., & Munte, T. F. (2009). Functional connectivity of reward processing in the brain. Frontiers in Human Neuroscience, 2, 1-14. DOI: 10.3389/neuro.09.019.2008
  6. Cohen, M. X., Schoene-Bake, J. C., Elger, C. E., & Weber, B. (2009). Connectivity-based segregation of the human striatum predicts personality characteristics. Nature Neuroscience, 12(1), 32-34. DOI: 10.1038/nn.2228
  7. Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic and taskevoked network architectures of the human brain. Neuron, 83(1), 238-251. DOI: 10.1016/j.neuron.2014.05.014
  8. d'Acremont, M., Fornari, E., & Bossaerts, P. (2013). Activity in inferior parietal and medial prefrontal cortex signals the accumulation of evidence in a probability learning task. PLoS Computational Biology, 9(1). DOI: 10.1371/journal.pcbi.1002895
  9. Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A. T., Fox, M. D., Snyder, A. Z., Vencent, J. L., Raichle, M. E., Schlaggar, B. L., & Petersen, S. E. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences, 104(26), 11073-11078. DOI: 10.1371/journal.pcbi.1002895
  10. Dreher, J. C., Kohn, P., & Berman, K. F. (2006). Neural coding of distinct statistical properties of reward information in humans. Cerebral Cortex, 16(4), 561-573. DOI: 10.1093/cercor/bhj004
  11. Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. Neuroimage, 6(3), 218-229. DOI: 10.1006/nimg.1997.0291
  12. Gerlach, K. D., Spreng, R. N., Madore, K. P., & Schacter, D. L. (2014). Future planning: default network activity couples with frontoparietal control network and reward-processing regions during process and outcome simulations. Social Cognitive and Affective Neuroscience, 9(12), 1942-1951. DOI: 10.1093/scan/nsu001
  13. Huettel, S. A. (2005). Decisions under uncertainty: Probabilistic context influences activation of prefrontal and parietal cortices. Journal of Neuroscience, 25(13), 3304-3311. DOI: 10.1523/JNEUROSCI.5070-04.2005
  14. Kahneman, D., & Tversky, A. (1984). Choices, values, and frames. American Psychologist, 39, 341-350. https://doi.org/10.1037/0003-066X.39.4.341
  15. Krebs, R. M., Schott, B. H., & Duzel, E. (2009). Personality traits are differentially associated with patterns of reward and novelty processing in the human substantia nigra/ventral tegmental area. Biological Psychiatry, 65(2), 103-110. DOI: 10.1016/j.biopsych.2008.08.019
  16. Labudda, K., Woermann, F. G., Mertens, M., Pohlmann-Eden, B., Markowitsch, H. J., & Brand, M. (2008). Neural correlates of decision making with explicit information about probabilities and incentives in elderly healthy subjects. Experimental Brain Research, 187(4), 641-650. DOI: 10.1007/s00221-008-1332-x
  17. Liljeholm, M., Wang, S., Zhang, J., & O'Doherty, J. P. (2013). Neural correlates of the divergence of instrumental probability distributions. Journal of Neuroscience, 33(30), 12519-12527. DOI: 10.1523/JNEUROSCI.1353-13.2013
  18. Liu, X., Hairston, J., Schrier, M., & Fan, J. (2011). Common and distinct networks underlying reward valence and processing stages: A meta-analysis of functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 35(5), 1219-1236. DOI: 10.1016/j.neubiorev.2010.12.012
  19. Peters, J., & Buchel, C. (2009). Overlapping and distinct neural systems code for subjective value during intertemporal and risky decision making. Journal of Neuroscience, 29(50), 15727-15734. DOI: 10.1523/JNEUROSCI.3489-09.2009
  20. Platt, M. L., & Glimcher, P. W. (1999). Neural correlates of decision variables in parietal cortex. Nature, 400(6741), 233-238. DOI: 10.1038/22268
  21. Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., Vogel, A. C., Laumann, T. O., Miezin, F. M., Schlaggar, B. L., & Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72(4), 665-678. DOI: 10.1016/j.neuron.2011.09.006
  22. Reise, S. P., Moore, T. M., Sabb, F. W., Brown, A. K., & London, E. D. (2013). The Barratt Impulsiveness Scale - 11: Reassessment of its structure in a community sample. Psychological Assessment, 25(2), 631-642. DOI: 10.1037/a0032161
  23. Rotter, J. B. (1972). Applications of a social learning theory of personality. New York: Holt.
  24. Simon, J. J., Walther, S., Fiebach, C. J., Friederich, H., Stippich, C., Weisbrod, M., & Kaiser, S. (2010). Neural reward processing is modulated by approachand avoidance-related personality traits. NeuroImage, 49(2), 1868-1874. DOI: 10.1016/j.neuroimage.2009.09.016
  25. Slotnick, S. D., Moo, L. R., Segal, J. B., & Hart, J. (2003). Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes. Cognitive Brain Research, 17(1), 75-82. DOI: 10.1016/s0926-6410(03)00082-x
  26. Stanford, M. S., Mathias, C. W., Dougherty, D. M., Lake, S. L., Anderson, N. E., & Patton, J. H. (2009). Fifty years of the Barratt Impulsiveness Scale: An update and review. Personality and Individual Differences. 47, 385-395. DOI: 10.1016/j.paid.2009.04.008
  27. Tobler, P. N., O'Doherty, J. P., Dolan, R. J., & Schultz, W. (2007). Reward value coding distinct from risk attitude-related uncertainty coding in human reward systems. Journal of Neurophysiology, 97(2), 1621-1632. DOI: 10.1152/jn.00745.2006
  28. Tobler, P. N., Christopoulos, G. I., O'Doherty, J. P., Dolan, R. J., & Schultz, W. (2008). Neuronal distortions of reward probability without choice. Journal of Neuroscience, 28(45), 11703-11711. DOI: 10.1152/jn.00745.2006
  29. Tobler, P. N., Christopoulos, G. I., O'Doherty, J. P., Dolan, R. J., & Schultz, W. (2009). Risk-dependent reward value signal in human prefrontal cortex. Proceedings of the National Academy of Sciences, 106(17), 7185-7190. DOI: 10.1073/pnas.0809599106
  30. Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100(6), 3328-3342. DOI: 10.1152/jn.90355.2008
  31. von Neumann J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton, NJ: Princeton UP.
  32. Wager, T. D., & Nichols, T. E. (2003). Optimization of experimental design in fMRI: a general framework using a genetic algorithm. Neuroimage, 18, 293-309. DOI: 10.1016/S1053-8119(02)00046-0
  33. Weber, B. J., & Huettel, S. A. (2008). The neural substrates of probabilistic and intertemporal decision making. Brain Research, 1234, 104-115. DOI: 10.1016/j.brainres.2008.07.105
  34. Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zollei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125-1165. DOI: 10.1152/jn.00338.2011