DOI QR코드

DOI QR Code

Synthesis of SnO2-Mn-C60 Nanocomposites and Their Photocatalytic Activity for Degradation of Organic Dyes

  • Li, Jiulong (Department of Convergence Science, Graduate School, Sahmyook University) ;
  • Ko, Jeong Won (Department of Convergence Science, Graduate School, Sahmyook University) ;
  • Ko, Weon Bae (Department of Convergence Science, Graduate School, Sahmyook University)
  • Received : 2017.11.22
  • Accepted : 2017.12.14
  • Published : 2017.12.31

Abstract

Nanocomposites based on $SnO_2-Mn$ were synthesized by the reaction of tin (II) chloride dihydrate and manganese (II) chloride tetrahydrate at a molar ratio of 10:1 in the presence of ammonium hydroxide at $80^{\circ}C$. The $SnO_2-Mn$ nanocomposites were stirred with fullerene [$C_{60}$] in a mass ratio of 2:1 in tetrahydrofuran to prepare $SnO_2-Mn-C_{60}$ nanocomposites; these nanocomposites were obtained upon heating the mixture of $SnO_2-Mn$ nanocomposites and fullerene [$C_{60}$] in an electric furnace at $700^{\circ}C$ for 2 h. The synthesized $SnO_2-Mn-C_{60}$ nanocomposites were confirmed through various characterization methods such as X-ray diffraction and scanning electron microscopy. The photocatalytic activities of the $SnO_2-Mn-C_{60}$ nanocomposites were demonstrated by the degradation of the organic dyes BG, MB, MO, and RhB under 254 nm irradiation and evaluated using UV-Vis spectrophotometry.

Keywords

References

  1. A. Sharma, M. Varshney, S. Kumar, K. D. Verma, and R. Kumar, "Magnetic properties of Fe and Ni doped $SnO_2$ nanoparticles", Nanomater. Nanotechno., 1, 24 (2011).
  2. G. A. Prinz, "Magnetoelectronics", Science, 282, 1660 (1998). https://doi.org/10.1126/science.282.5394.1660
  3. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. V. Molnar, M. L. Roukes, A. Y. Chtcheljanova, and D. M. Treger, "Spintronics: A Spin-Based Electronics Vision for the Future", Scinece, 294, 1488 (2001). https://doi.org/10.1126/science.1065389
  4. A. Azam, A. S. Ahmed, S. S. Habib, and A. H. Naqvi, "Effect of Mn doping on the structural and optical properties of $SnO_2$ nanoparticles", J. Alloy. Compd., 523, 83 (2012). https://doi.org/10.1016/j.jallcom.2012.01.072
  5. N. Salah, S. Habib, A. Azam, M. S. Ansari, and W. M. ALShawafi, "Formation of Mn-doped $SnO_2$ nanoparticles via the microwave technique: structural, optical and electrical properties", Nanomater. Nanotechno., DOI: 10.5772/62520 (2016).
  6. B. Liu, C. W. Cheng, R. Chen, Z. X. Shen, H. J. Fan, and H. D. Sun, "Fine structure of ultraviolet photoluminescence of tin oxide nanowires", J. Phys. Chem. C, 114, 3407 (2010). https://doi.org/10.1021/jp9104294
  7. S. Mehraj, M. S. Ansari, and Alimuddin, "Structural, electrical and magnetic properties of (Fe, Co) co-doped $SnO_2$ diluted magnetic semiconductor nanostructures", Physica E, 65, 84 (2015). https://doi.org/10.1016/j.physe.2014.08.016
  8. X. G. Chen, W. W. Li, J. D. Wu, J. Sun, K. Jiang, Z. G. Hu, and J. H. Chu, "Temperature dependence of electronic band transition in Mn-doped $SnO_2$ nanocrystalline films determined by ultraviolet-near-infrared transmittance spectra", Mater. Res. Bull., 47, 111 (2012). https://doi.org/10.1016/j.materresbull.2011.09.019
  9. R. S. Niranjan, Y. K. Hwang, D. K. Kim, S. H. Jhung, J. S. Chang, and I. S. Mulla, "Nanostructured tin oxide: Synthesis and gas-sensing properties", Mater. Chem. Phys., 92, 384 (2005). https://doi.org/10.1016/j.matchemphys.2005.01.050
  10. S. C. Lee, J. H. Lee, T. S. Oh, and Y. H. Kim, "Fabrication of tin oxide film by sol-gel method for photovoltaic solar cell system", Sol. Energ. Mat. Sol. C., 75, 481 (2003). https://doi.org/10.1016/S0927-0248(02)00201-5
  11. W. L. Yu, W. W. Li, J. D. Wu, J. Sun, J. J. Zhu, M. Zhu, Z. G. Hu, and J. H. Chu, "Far-infrared-ultraviolet dielectric function, lattice vibration, and photoluminescence properties of diluted magnetic semiconductor $Sn_{1-x}Mn_{x}O_{2}/c$-sapphire nanocrystalline films", J. Phys. Chem. C, 114, 8593 (2010).
  12. A. Bouaine, N. Brihi, G. Schmerber, C. U. Bouillet, S. Colis, and A. Dinia, "Structural, optical, and magnetic properties of Co-doped $SnO_2$ powders synthesized by the co-precipitation technique", J. Phys. Chem. C, 111, 2924 (2007). https://doi.org/10.1021/jp066897p
  13. B. Sathyaseelana, K. Senthilnathanb, T. Alagesanc, R. Jayaveld, and K. Sivakumara, "A study on structural and optical properties of Mn- and Co-doped $SnO_2$ nanocrystallites", Mater. Chem. Phys., 124, 1046 (2010). https://doi.org/10.1016/j.matchemphys.2010.08.029
  14. H. Zhu, D. Yang, G. Yu, H. Zhang, and K. Yao, "A simple hydrothermal route for synthesizing $SnO_2$ quantum dots", Nanotechnology, 17, 2386 (2006). https://doi.org/10.1088/0957-4484/17/9/052
  15. Y. Liu, F. Yang, and X. Yang, "Size-controlled synthesis and characterization of quantum-size $SnO_2$ nanocrystallites by a solvothermal route", Colloid. Surface. A, 312, 219 (2008). https://doi.org/10.1016/j.colsurfa.2007.06.054
  16. A. C. Bose, P. Thangadurai, and S. Ramasamy, "Grain size dependent electrical studies on nanocrystalline $SnO_2$", Mater. Chem. Phys., 95, 72 (2006). https://doi.org/10.1016/j.matchemphys.2005.04.058
  17. N. Lavanya, E. Fazio, F. Neri, A. Bonavita, S. G. Leonardi, G. Neri, and C. Sekar, "Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn-$SnO_2$ nanoparticles modified glassy carbon electrode", J. Electroanal. Chem., 770, 23 (2016). https://doi.org/10.1016/j.jelechem.2016.03.017
  18. G. Chen, W. W. Li, J. D. Wu, J. Sun, K. Jiang, Z. G. Hu, and J. H. Chu, "Temperature dependence of electronic band transition in Mn-doped $SnO_2$ nanocrystalline films determined by ultraviolet-near-infrared transmittance spectra", Mater. Res. Bull., 47, 111 (2012). https://doi.org/10.1016/j.materresbull.2011.09.019
  19. W. W. Li, J. J. Zhu, J. D. Wu, J. Sun, M. Zhu, Z. G. Hu, and J. H. Chu, "Composition and temperature dependence of electronic and optical properties in manganese doped tin dioxide Films on quartz substrates prepared by pulsed laser deposition", ACS Appl. Mater. Interfaces, 2, 2325 (2010). https://doi.org/10.1021/am100353f
  20. X. Chen and S. S. Mao, "Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications", Chem. Rev., 107, 2891 (2007). https://doi.org/10.1021/cr0500535
  21. Z. He, W. Que, J. Chen, X. Yin, Y. He, and J. Ren, "Photocatalytic degradation of methyl orange over nitrogen-fluorine codoped $TiO_2$ nanobelts prepared by solvothermal synthesis", ACS Appl. Mater. Interfaces, 4, 6816 (2012). https://doi.org/10.1021/am3019965
  22. A. M. K. El-ghonemy, "Waste energy recovery in sea water reverse osmosis desalination plants, Part-1: review", Renew. Sust. Energ. Rev., 18, 6 (2013). https://doi.org/10.1016/j.rser.2012.09.022
  23. K. Anandan and V. Rajendran, "Influence of dopant concentrations (Mn = 1, 2 and 3 mol %) on the structural, magnetic and optical properties and photocatalytic activities of $SnO_2$ nanoparticles synthesized via the simple precipitation process", Superlattice. Microst., 85, 185 (2015). https://doi.org/10.1016/j.spmi.2015.05.031
  24. V. K. Sharma, T. M. Triantis, M. G. Antoniou, X. He, M. Pelaez, C. Han, W. Song, K. E. O'Shea, A. A. de la Cruz, T. Kaloudis, A. Hiskia, and D. D. Dionysiou, "Destruction of microcystins by conventional and advanced oxidation processes", Sep. Purif. Technol., 91, 3 (2012). https://doi.org/10.1016/j.seppur.2012.02.018
  25. K. Hara, T. Horiguchi, T. Khinoshita, K. Sayama, H. Sugihara, and H. Arakawa, "Highly efficient photon-to-electron conversion with mercurochromesensitized nanoporous oxide semiconductor solar cells", Sol. Energ. Mat. Sol. C., 64, 115 (2000). https://doi.org/10.1016/S0927-0248(00)00065-9
  26. J. L. Li, J. W. Ko, and W. B. Ko, "Preparation and characterization of $CeO_{2}-C_{60}$ nanocomposites and their application to photocatalytic degradation of organic dyes", Asian J. Chem., 28, 2020 (2016). https://doi.org/10.14233/ajchem.2016.19880
  27. J. L. Li, J. W. Ko, and W. B. Ko, "Photocatalytic activities of carbon nanocapsules encircled by nickel nanoparticle composites to organic dyes degradation", J. Ceram. Process. Res., 16, 457 (2015).
  28. S. Mehraj, M. S. Ansari, and Alimuddin, "Rutile-type Co doped $SnO_2$ diluted magnetic semiconductor nanoparticles: structural, dielectric and ferromagnetic behavior", Physica B, 430, 106 (2013). https://doi.org/10.1016/j.physb.2013.08.024
  29. M. Ishikawa, S. Kamiya, S. Yoshimoto, M. Suzuki, D. Kuwahara, N. Sasaki, and K. Miura, "Nanocomposite materials of alternately stacked $C_{60}$ monolayer and graphene", J. Nanomater., 2010, 891514 (2010).
  30. N. S. Arul, D. Mangalaraj, and T. W. Kim, "Photocatalytic degradation mechanisms of $CeO_{2}/Tb_{2}O_{3}$ nanotubes", Appl. Surf. Sci., 349, 459 (2015). https://doi.org/10.1016/j.apsusc.2015.04.206
  31. S. K. Kansal, G. Kaur, and S. Singh, "Studies on the photocatalytic degradation of 2,3-dichlorophenol using different oxidants in aqueous solutions", React. Kinet. Catal. L., 98, 177 (2009). https://doi.org/10.1007/s11144-009-0058-5