References
-
A. Sharma, M. Varshney, S. Kumar, K. D. Verma, and R. Kumar, "Magnetic properties of Fe and Ni doped
$SnO_2$ nanoparticles", Nanomater. Nanotechno., 1, 24 (2011). - G. A. Prinz, "Magnetoelectronics", Science, 282, 1660 (1998). https://doi.org/10.1126/science.282.5394.1660
- S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. V. Molnar, M. L. Roukes, A. Y. Chtcheljanova, and D. M. Treger, "Spintronics: A Spin-Based Electronics Vision for the Future", Scinece, 294, 1488 (2001). https://doi.org/10.1126/science.1065389
-
A. Azam, A. S. Ahmed, S. S. Habib, and A. H. Naqvi, "Effect of Mn doping on the structural and optical properties of
$SnO_2$ nanoparticles", J. Alloy. Compd., 523, 83 (2012). https://doi.org/10.1016/j.jallcom.2012.01.072 -
N. Salah, S. Habib, A. Azam, M. S. Ansari, and W. M. ALShawafi, "Formation of Mn-doped
$SnO_2$ nanoparticles via the microwave technique: structural, optical and electrical properties", Nanomater. Nanotechno., DOI: 10.5772/62520 (2016). - B. Liu, C. W. Cheng, R. Chen, Z. X. Shen, H. J. Fan, and H. D. Sun, "Fine structure of ultraviolet photoluminescence of tin oxide nanowires", J. Phys. Chem. C, 114, 3407 (2010). https://doi.org/10.1021/jp9104294
-
S. Mehraj, M. S. Ansari, and Alimuddin, "Structural, electrical and magnetic properties of (Fe, Co) co-doped
$SnO_2$ diluted magnetic semiconductor nanostructures", Physica E, 65, 84 (2015). https://doi.org/10.1016/j.physe.2014.08.016 -
X. G. Chen, W. W. Li, J. D. Wu, J. Sun, K. Jiang, Z. G. Hu, and J. H. Chu, "Temperature dependence of electronic band transition in Mn-doped
$SnO_2$ nanocrystalline films determined by ultraviolet-near-infrared transmittance spectra", Mater. Res. Bull., 47, 111 (2012). https://doi.org/10.1016/j.materresbull.2011.09.019 - R. S. Niranjan, Y. K. Hwang, D. K. Kim, S. H. Jhung, J. S. Chang, and I. S. Mulla, "Nanostructured tin oxide: Synthesis and gas-sensing properties", Mater. Chem. Phys., 92, 384 (2005). https://doi.org/10.1016/j.matchemphys.2005.01.050
- S. C. Lee, J. H. Lee, T. S. Oh, and Y. H. Kim, "Fabrication of tin oxide film by sol-gel method for photovoltaic solar cell system", Sol. Energ. Mat. Sol. C., 75, 481 (2003). https://doi.org/10.1016/S0927-0248(02)00201-5
-
W. L. Yu, W. W. Li, J. D. Wu, J. Sun, J. J. Zhu, M. Zhu, Z. G. Hu, and J. H. Chu, "Far-infrared-ultraviolet dielectric function, lattice vibration, and photoluminescence properties of diluted magnetic semiconductor
$Sn_{1-x}Mn_{x}O_{2}/c$ -sapphire nanocrystalline films", J. Phys. Chem. C, 114, 8593 (2010). -
A. Bouaine, N. Brihi, G. Schmerber, C. U. Bouillet, S. Colis, and A. Dinia, "Structural, optical, and magnetic properties of Co-doped
$SnO_2$ powders synthesized by the co-precipitation technique", J. Phys. Chem. C, 111, 2924 (2007). https://doi.org/10.1021/jp066897p -
B. Sathyaseelana, K. Senthilnathanb, T. Alagesanc, R. Jayaveld, and K. Sivakumara, "A study on structural and optical properties of Mn- and Co-doped
$SnO_2$ nanocrystallites", Mater. Chem. Phys., 124, 1046 (2010). https://doi.org/10.1016/j.matchemphys.2010.08.029 -
H. Zhu, D. Yang, G. Yu, H. Zhang, and K. Yao, "A simple hydrothermal route for synthesizing
$SnO_2$ quantum dots", Nanotechnology, 17, 2386 (2006). https://doi.org/10.1088/0957-4484/17/9/052 -
Y. Liu, F. Yang, and X. Yang, "Size-controlled synthesis and characterization of quantum-size
$SnO_2$ nanocrystallites by a solvothermal route", Colloid. Surface. A, 312, 219 (2008). https://doi.org/10.1016/j.colsurfa.2007.06.054 -
A. C. Bose, P. Thangadurai, and S. Ramasamy, "Grain size dependent electrical studies on nanocrystalline
$SnO_2$ ", Mater. Chem. Phys., 95, 72 (2006). https://doi.org/10.1016/j.matchemphys.2005.04.058 -
N. Lavanya, E. Fazio, F. Neri, A. Bonavita, S. G. Leonardi, G. Neri, and C. Sekar, "Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn-
$SnO_2$ nanoparticles modified glassy carbon electrode", J. Electroanal. Chem., 770, 23 (2016). https://doi.org/10.1016/j.jelechem.2016.03.017 -
G. Chen, W. W. Li, J. D. Wu, J. Sun, K. Jiang, Z. G. Hu, and J. H. Chu, "Temperature dependence of electronic band transition in Mn-doped
$SnO_2$ nanocrystalline films determined by ultraviolet-near-infrared transmittance spectra", Mater. Res. Bull., 47, 111 (2012). https://doi.org/10.1016/j.materresbull.2011.09.019 - W. W. Li, J. J. Zhu, J. D. Wu, J. Sun, M. Zhu, Z. G. Hu, and J. H. Chu, "Composition and temperature dependence of electronic and optical properties in manganese doped tin dioxide Films on quartz substrates prepared by pulsed laser deposition", ACS Appl. Mater. Interfaces, 2, 2325 (2010). https://doi.org/10.1021/am100353f
- X. Chen and S. S. Mao, "Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications", Chem. Rev., 107, 2891 (2007). https://doi.org/10.1021/cr0500535
-
Z. He, W. Que, J. Chen, X. Yin, Y. He, and J. Ren, "Photocatalytic degradation of methyl orange over nitrogen-fluorine codoped
$TiO_2$ nanobelts prepared by solvothermal synthesis", ACS Appl. Mater. Interfaces, 4, 6816 (2012). https://doi.org/10.1021/am3019965 - A. M. K. El-ghonemy, "Waste energy recovery in sea water reverse osmosis desalination plants, Part-1: review", Renew. Sust. Energ. Rev., 18, 6 (2013). https://doi.org/10.1016/j.rser.2012.09.022
-
K. Anandan and V. Rajendran, "Influence of dopant concentrations (Mn = 1, 2 and 3 mol %) on the structural, magnetic and optical properties and photocatalytic activities of
$SnO_2$ nanoparticles synthesized via the simple precipitation process", Superlattice. Microst., 85, 185 (2015). https://doi.org/10.1016/j.spmi.2015.05.031 - V. K. Sharma, T. M. Triantis, M. G. Antoniou, X. He, M. Pelaez, C. Han, W. Song, K. E. O'Shea, A. A. de la Cruz, T. Kaloudis, A. Hiskia, and D. D. Dionysiou, "Destruction of microcystins by conventional and advanced oxidation processes", Sep. Purif. Technol., 91, 3 (2012). https://doi.org/10.1016/j.seppur.2012.02.018
- K. Hara, T. Horiguchi, T. Khinoshita, K. Sayama, H. Sugihara, and H. Arakawa, "Highly efficient photon-to-electron conversion with mercurochromesensitized nanoporous oxide semiconductor solar cells", Sol. Energ. Mat. Sol. C., 64, 115 (2000). https://doi.org/10.1016/S0927-0248(00)00065-9
-
J. L. Li, J. W. Ko, and W. B. Ko, "Preparation and characterization of
$CeO_{2}-C_{60}$ nanocomposites and their application to photocatalytic degradation of organic dyes", Asian J. Chem., 28, 2020 (2016). https://doi.org/10.14233/ajchem.2016.19880 - J. L. Li, J. W. Ko, and W. B. Ko, "Photocatalytic activities of carbon nanocapsules encircled by nickel nanoparticle composites to organic dyes degradation", J. Ceram. Process. Res., 16, 457 (2015).
-
S. Mehraj, M. S. Ansari, and Alimuddin, "Rutile-type Co doped
$SnO_2$ diluted magnetic semiconductor nanoparticles: structural, dielectric and ferromagnetic behavior", Physica B, 430, 106 (2013). https://doi.org/10.1016/j.physb.2013.08.024 -
M. Ishikawa, S. Kamiya, S. Yoshimoto, M. Suzuki, D. Kuwahara, N. Sasaki, and K. Miura, "Nanocomposite materials of alternately stacked
$C_{60}$ monolayer and graphene", J. Nanomater., 2010, 891514 (2010). -
N. S. Arul, D. Mangalaraj, and T. W. Kim, "Photocatalytic degradation mechanisms of
$CeO_{2}/Tb_{2}O_{3}$ nanotubes", Appl. Surf. Sci., 349, 459 (2015). https://doi.org/10.1016/j.apsusc.2015.04.206 - S. K. Kansal, G. Kaur, and S. Singh, "Studies on the photocatalytic degradation of 2,3-dichlorophenol using different oxidants in aqueous solutions", React. Kinet. Catal. L., 98, 177 (2009). https://doi.org/10.1007/s11144-009-0058-5