초록
일원배치모형에서 세 개 이상의 처리 간에 차이 유무를 검정하여 귀무가설이 기각됐다면, 어떤 것이 통계적으로 유의한 결과인지 확인하기 위해서는 다중비교 방법이 필요하다. 대표적인 모수적 검정법으로는 Tukey (1953), 비모수적 검정법으로는 Kruskal-Wallis (1952)의 검정에 기초한 방법이 있다. 이 방법은 전체 자료에 대한 혼합표본에 순위를 부여한 후 세 개 이상의 각 처리별 평균 순위를 이용한 검정방법이다. 본 논문에서는 Chung과 Kim (2007)이 제안한 결합위치 검정법을 확장하여 일원배치모형에서 새로운 비모수적 다중비교 방법을 제안하였다. 또한 모의실험(Monte Carlo simulation)을 통해 기존의 검정방법들과 제안한 방법의 family wise error rate (FWE)와 검정력을 비교하였다.
Multiple comparisons are required to confirm whether or not something is significant if the null hypothesis to test whether the difference between more than three treatments is rejected in a one-way layout. There are both parametric multiple comparison method Tukey (1953) and Nonparametric multiple comparison method based on Kruskal-Wallis (1952).This procedure is applied to a mixed sample of all data and then an average ranking is used for each of three or more treatments. In this paper, a new nonparametric multiple comparison procedure based on joint placements for a one-way layout as extension of the joint placements described in Chung and Kim (2007) was proposed. Monte Carlo simulation is also adapted to compare the family wise error rate (FWE) and the power of the proposed method with previous methods.