DOI QR코드

DOI QR Code

Nonparametric multiple comparison method in one-way layout based on joint placement

일원배치모형에서 결합위치를 이용한 비모수 다중비교법

  • Seok, Dahee (Department of Biomedicine.Health Science, The Catholic University of Korea) ;
  • Kim, Dongjae (Department of Biomedicine.Health Science, The Catholic University of Korea)
  • 석다희 (가톨릭대학교 의생명.건강과학과) ;
  • 김동재 (가톨릭대학교 의생명.건강과학과)
  • Received : 2017.09.14
  • Accepted : 2017.11.02
  • Published : 2017.12.31

Abstract

Multiple comparisons are required to confirm whether or not something is significant if the null hypothesis to test whether the difference between more than three treatments is rejected in a one-way layout. There are both parametric multiple comparison method Tukey (1953) and Nonparametric multiple comparison method based on Kruskal-Wallis (1952).This procedure is applied to a mixed sample of all data and then an average ranking is used for each of three or more treatments. In this paper, a new nonparametric multiple comparison procedure based on joint placements for a one-way layout as extension of the joint placements described in Chung and Kim (2007) was proposed. Monte Carlo simulation is also adapted to compare the family wise error rate (FWE) and the power of the proposed method with previous methods.

일원배치모형에서 세 개 이상의 처리 간에 차이 유무를 검정하여 귀무가설이 기각됐다면, 어떤 것이 통계적으로 유의한 결과인지 확인하기 위해서는 다중비교 방법이 필요하다. 대표적인 모수적 검정법으로는 Tukey (1953), 비모수적 검정법으로는 Kruskal-Wallis (1952)의 검정에 기초한 방법이 있다. 이 방법은 전체 자료에 대한 혼합표본에 순위를 부여한 후 세 개 이상의 각 처리별 평균 순위를 이용한 검정방법이다. 본 논문에서는 Chung과 Kim (2007)이 제안한 결합위치 검정법을 확장하여 일원배치모형에서 새로운 비모수적 다중비교 방법을 제안하였다. 또한 모의실험(Monte Carlo simulation)을 통해 기존의 검정방법들과 제안한 방법의 family wise error rate (FWE)와 검정력을 비교하였다.

Keywords

References

  1. Chung, T. and Kim, D. (2007). Nonparametric method using placement in one-way layout, The Korean Communications in Statistics, 14, 551-560.
  2. Duncan, D. B. (1955). Multiple range and multiple F tests, Biometrics, 11, 1-42. https://doi.org/10.2307/3001478
  3. Dunn, O. J. (1964). Multiple comparisons using rank sums, Technometrics, 6, 241-252. https://doi.org/10.1080/00401706.1964.10490181
  4. Kramer, C. Y. (1956). Extension of multiple range tests to group means with unequal numbers of replications, Biometrics, 12, 309-310.
  5. Kruskal, W. H. and Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis, Journal of the American Statistical Association, 47, 583-621. https://doi.org/10.1080/01621459.1952.10483441
  6. Orban, J. and Wolfe, D. A. (1982). A class of distribution-free two-sample tests based on placement, Journals of the American Statistical Association, 77, 666-671. https://doi.org/10.1080/01621459.1982.10477870
  7. Scheffe, H. (1953). A method for judging all contrasts in the analysis of variance, Biometrika, 40, 87-104.
  8. Seong, N. (2001). Experimental Design and Analysis, Free Academy, Seoul.
  9. Tukey, J. W. (1953). The Problem of Multiple Comparisons, Unpublished dotted notes, Princeton University, Princeton, New Jersey.