DOI QR코드

DOI QR Code

기상변수를 활용한 일사량 예측 연구

A study on solar irradiance forecasting with weather variables

  • 김삼용 (응용통계학과, 중앙대학교)
  • Kim, Sahm (Department of Applied Statistics, Chung-Ang University)
  • 투고 : 2017.10.17
  • 심사 : 2017.10.28
  • 발행 : 2017.12.31

초록

본 연구에서는 태양광 발전량 예측에 필요한 일사량을 예측하기 위해 다양한 기상변수를 활용한 다중회귀, ARIMA, ARIMAX 모형을 사용하여 각 모형의 예측 성능을 비교하고자 한다. 예측에 사용된 변수와 시계열 모형에 대해 소개하고, 실제 일사량 예측에 적용하여 일사량을 예측한 결과 운량, 기온, 습도, 대기권 밖 일사량을 활용한 ARIMAX 모형의 성능이 가장 우수하였다.

In this paper, we investigate the performances of time series models to forecast irradiance that consider weather variables such as temperature, humidity, cloud cover and Global Horizontal Irradiance. We first introduce the time series models and show that regression ARIMAX has the best performance with other models such as ARIMA and multiple regression models.

키워드

참고문헌

  1. Dazhi, Y., Jirutitijaroen, P., and Walsh, W. M. (2012) Hourly solar irradiance time series forecasting using cloud cover index, Solar Energy, 86, 3531-3543. https://doi.org/10.1016/j.solener.2012.07.029
  2. Duffle, J. A. and Beckman, W. A. (2013). Solar Engineering of Thermal Process (4th ed), John Wiley & Sons, New York, 3-41.
  3. Huang, J. and Davy, R. J. (2016). Predicting intra-hour variability of solar irradiance using hourly local weather forecasts, Solar Energy, 139, 633-639. https://doi.org/10.1016/j.solener.2016.10.036
  4. Maleki, S. A. M., Hizam, H., and Gomes, C. (2017). Estimation of hourly, daily, and monthly global solar radiation on inclined surfaces: models re-visited, Energies 2017, 10, 134-161. https://doi.org/10.3390/en10010134
  5. Martin, L., Zarzalejo, L. F., Polo, J., Navarro, A., Marchante, R. and Cony, M. (2010). Prediction of globar solar irradiance based on time series analysis: Application to solar thermal power plants energy production planning, Solar Energy, 84, 1772-1871. https://doi.org/10.1016/j.solener.2010.07.002
  6. Moreno-Munoz, A., de la Rosa, J. J. G., Posadillo, R., and Bellido, F. (2008). Short term forecasting of solar radiation, IEEE, International Symposium on Industrial Electronics, 1537-1541.
  7. Park, J. K., Kim, B. S., and Park, J. H. (2014). Characteristic analysis of solar radiation and atmospheric transmissivity at Chupungryeong, Journal of Agricultural Science, 41, 149-155.
  8. Park, S.-H. and Kim, S. (2016) A study on short-term wind power forecasting using time series models, The Korean Journal of Applied Statistics, 29, 1373-1383.
  9. Reikard, G. (2009). Predicting solar radiation at high resolutions : A comparison of time series forecasts, Solar Energy, 83, 342-349. https://doi.org/10.1016/j.solener.2008.08.007
  10. Sohn, H., Jung, S., and Kim, S. (2016). A study on electricity demand forecasting based on time series clustering in smart grid, The Korean Journal of Applied Statistics, 29, 190-203.