DOI QR코드

DOI QR Code

Nonparametric method using linear placement statistics in randomized block design with replications

반복이 있는 랜덤화 블록 계획법에서 선형위치통계량을 이용한 비모수 검정법

  • Kim, Aran (Department of Biomedicine.Health Science, The Catholic University of Korea) ;
  • Kim, Dongjae (Department of Biomedicine.Health Science, The Catholic University of Korea)
  • 김아란 (가톨릭대학교 의생명.건강과학과) ;
  • 김동재 (가톨릭대학교 의생명.건강과학과)
  • Received : 2017.09.14
  • Accepted : 2017.10.20
  • Published : 2017.12.31

Abstract

Typical Nonparametric methods for randomized block design with replications are two methods proposed by Mack (1981) and Mack and Skillings (1980). This method is likely to cause information loss because it uses the average of repeated observations instead of each repeated observation in the processing of each block. In order to compensate for this, we proposed a test method using linear placement statistics, which is a score function applied to the joint placement method proposed by Chung and Kim (2007). Monte Carlo simulation study is adapted to compare the power with previous methods.

반복이 있는 랜덤화 블록 계획법(randomized block design with replications)에서의 대표적인 검정법은 Mack이 제안한 방법과 Mack과 Skillings이 제안한 방법이 있다. 이 방법은 각 블록의 처리에서 반복된 각 관측값 대신에 반복된 관측값들의 평균을 이용하여 순위를 매기기 때문에 정보의 손실이 발생할 가능성이 있다. 이를 보완하기 위해 본 논문에서는 Chung과 Kim (2007)이 제안한 결합위치(joint placement) 방법에 점수함수(score function)를 적용한 선형위치통계량(linear placement statistics)을 이용한 검정방법을 제안하였다. 또한 Monte Carlo simulation study를 통해 기존의 방법들과 검정력을 비교하였다.

Keywords

References

  1. Chung, T. and Kim, D. (2007). Nonparametric method using placement in one-way layout, The Korean Communications in Statistics, 14, 551-560.
  2. Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance, Journal of the American Statistical Association, 32, 675-701. https://doi.org/10.1080/01621459.1937.10503522
  3. Hettmansperger, T. P. (1957). Non-parametric inference for ordered alternatives in a randomized block design, Psychometrika, 40, 53-62.
  4. Hong, I. and Lee, S. (2014). Kruskal-Wallis one-way analysis of variance based on linear placements, Korean Mathematical Society, 51, 701-716. https://doi.org/10.4134/BKMS.2014.51.3.701
  5. Jonckheere, A. R. (1954). A distribution-free k-sample test against ordered alternatives, Biometrika, 41, 133-145. https://doi.org/10.1093/biomet/41.1-2.133
  6. Kim, D. (1999). A class of distribution-free treatments versus control tests based on placements, Far East Journal of Theoretical Statistics, 3, 19-33.
  7. Kruskal, W. H. and Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis, Journal of the American Statistical Association, 47, 583-621. https://doi.org/10.1080/01621459.1952.10483441
  8. Mack, G. A. (1981). A quick and easy distribution-free test for main effects in a two-factor ANOVA, Communications in Statistics - Simulation and Computation, 10, 571-591. https://doi.org/10.1080/03610918108812236
  9. Mack, G. A. and Skillings, J. H. (1980). A Friedman-type rank test for main effects in a two-factor ANOVA, Journal of the American Statistical Association, 75, 947-951. https://doi.org/10.1080/01621459.1980.10477577
  10. Orban, J. and Wolfe, D. A. (1982). A class of distribution-free two-sample tests based on placements, Journals of the American Statistical Association, 77, 666-671. https://doi.org/10.1080/01621459.1982.10477870
  11. Page, E. B. (1963). Ordered hypotheses for multiple treatments: A significance test for linear ranks, Journals of the American Statistical Association, 58, 216-230. https://doi.org/10.1080/01621459.1963.10500843
  12. Sim, S. and Kim, D. (2013). Nonparametric method using placement in a randomized complete block design, Journal of the Korean Data Information Science Society, 24, 1401-1408. https://doi.org/10.7465/jkdi.2013.24.6.1401
  13. Skillings, J. H. and Wolfe, D. A. (1977). Testing for ordered alternatives by combining independent distribution-free block statistics, Communications in Statistics-Theory and Methods, 6, 1453-1463. https://doi.org/10.1080/03610927708827588
  14. Skillings, J. H. and Wolfe, D. A. (1978). Distribution-free tests for ordered alternatives in a randomized block design, Journals of the American Statistical Association, 73, 427-431. https://doi.org/10.1080/01621459.1978.10481595
  15. Song, H. and Kim, D. (2015). Understanding Statistics, Chenog Moon Gak Publisher, Seoul.
  16. Song, H. and Park, D. (1998). Analysis of Repeated Measures and Cross-over Design, Free Academy, Seoul.
  17. Terpstra, T. J. (1952). The asymptotic normality and consistency of kendall's test against trend, when ties are present in one ranking, Indagationes Mathematicae, 14, 327-333.