DOI QR코드

DOI QR Code

재표본 방법론을 활용한 베이지안 주파수 추정

Bayesian estimation for frequency using resampling methods

  • 박노진 (단국대학교 응용통계학과)
  • Pak, Ro Jin (Department of Applied Statistics, Dankook University)
  • 투고 : 2017.09.05
  • 심사 : 2017.10.25
  • 발행 : 2017.12.31

초록

시계열 자료의 주기를 파악하기 위해 스펙트럴 분석이 널리 이용되고 있다. 전력 스펙트럼이나 피리오도그램을 통해서 주파수를 추정하고 그로부터 순환 주기를 계산한다. 한편에서는 통계학의 한 축인 베이지안 기법을 활용한 주파수 추정법이 연구되어 사용되고 있다. 그런데 베이지안 주파수 추정량이 수학 공식을 통해 분석적으로 표현이 가능하지 않음으로 인해 신뢰구간 추정 같은 심도 깊은 통계학적 분석이 용이하지 않은 상화에서 컴퓨터를 이용한 수치해석적인 방법으로 신뢰구간을 추정하였다. 본 논문에서는 베이지안 주파수에 대한 보다 심도 있는 분석을 위해 모수를 재표본하는 Markov chain Monte Carlo (MCMC)을 이용한 추정과 데이터를 재표본하는 시계열 재표본을 통한 추정을 시도해 보았다. 예제로서 부동산 매매/전세 가격 지수 데이터을 사용하였고 매매와 전세 가격 지수간에 3.7개월 정도의 주기 차이가 존재하나 통계학적으로는 유의미한 차이라고 할 수 없음을 알았다.

Spectral analysis is used to determine the frequency of time series data. We first determine the frequency of the series through the power spectrum or the periodogram and then calculate the period of a cycle that may exist in a time series. Estimating the frequency using a Bayesian technique has been developed and proven to be useful; however, the Bayesian estimator for the frequency cannot be analytically solved through mathematical equations and may be handled numerically or computationally. In this paper, we make an inference on the Bayesian frequency through both resampling a parameter by Markov chain Monte Carlo (MCMC) methods and resampling data by bootstrap methods for a time series. We take the Korean real estate price index as an example for Bayesian frequency estimation. We have found a difference in the periods between the sale price index and the long term rental price index, but the difference is not statistically significant.

키워드

참고문헌

  1. Bartlett, M. S. (1948). Smoothing periodograms from time-series with continuous spectra, Nature, 161, 686-687. https://doi.org/10.1038/161686a0
  2. Bretthorst, G. L. (2013). Bayesian Spectrum Analysis and Parameter Estimation (Lecture Notes in Statistics), 48, Springer-Verlag, New York.
  3. Davison, A. C. and Hinkley, D. V. (1997). Bootstrap Methods and Their Application, Cambridge University Press, Cambridge.
  4. Dudek, A. E., Leskow, J., Paparoditis, E., and Politis, D. N. (2014). A generalized block bootstrap for seasonal time series, Journal of Time Series Analysis, 35, 89-114. https://doi.org/10.1002/jtsa.12053
  5. Efron, B. (1979). Bootstrap methods: another look at the jacknife, Annals of Statistics, 7, 1-26. https://doi.org/10.1214/aos/1176344552
  6. Gregory, P. (2005). Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica$^{(R)}$ Support, Cambridge University Press, Cambridge.
  7. Hall, P., Horowitz, J., and Jing, B. (1995). On blocking rules for the bootstrap with dependent data, Biometrika, 82, 561-574. https://doi.org/10.1093/biomet/82.3.561
  8. Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97-109. https://doi.org/10.1093/biomet/57.1.97
  9. Hayfield, T. and Racine, J. S. (2017). Nonparametric Econometrics: The np Package, R-package version 0.60-3, URL http://www.jstatsoft.org/v27/i05/.
  10. Jaynes, E. T. (1987). Bayesian spectrum and chirp analysis, Maximum Entropy and Bayesian Spectral Analysis and Estimation Problems, 1-37.
  11. Kreiss, J. P. and Lahiri, S. N. (2012). Bootstrap methods for time series, Time Series Analysis: Methods and Applications, 30, 3-25.
  12. Kunsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations, Annals of Statistics, 17, 1217-1241. https://doi.org/10.1214/aos/1176347265
  13. Lahiri, S. N. (1999). Theoretical comparisons of block bootstrap methods, Annals of Statistics, 27, 386-404. https://doi.org/10.1214/aos/1018031117
  14. Patton, A., Politis, D. N., and White, H. (2009). CORRECTION TO Automatic block-length selection for the dependent bootstrap by D. Politis and H. White, Econometric Reviews, 28, 372-375. https://doi.org/10.1080/07474930802459016
  15. Politis, D. N. and Romano, J. P. (1994). The stationary bootstrap, Journal of the American Statistical Association, 89, 1303-1313. https://doi.org/10.1080/01621459.1994.10476870
  16. Welch, P. D. (1967). The use of Fast Fourier Transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms, IEEE Transactions on Audio and Electroacoustics, 15, 70-73. https://doi.org/10.1109/TAU.1967.1161901