DOI QR코드

DOI QR Code

Heavy metals leaching behavior and ecological risks in water and wastewater treatment sludges

  • Wuana, Raymond A. (Department of Chemistry and Centre for Agrochemical Technology, Federal University of Agriculture) ;
  • Eneji, Ishaq S. (Department of Chemistry and Centre for Agrochemical Technology, Federal University of Agriculture) ;
  • Ugwu, Ezekiel C. (Department of Chemistry and Centre for Agrochemical Technology, Federal University of Agriculture)
  • Received : 2017.12.01
  • Accepted : 2018.01.26
  • Published : 2017.12.25

Abstract

Single (0.005 M DTPA), sequential (six-step) and kinetic (0.05 M EDTA) extractions were performed to assess Cd, Cr, Cu, Ni, Pb, and Zn mobilization and their potential ecological risks in Abuja (Nigeria) water (WTS) and wastewater (WWTS) treatment sludges. Total metal levels (mg/kg) in WTS and WWTS, respectively were: Cd(3.67 and 5.03), Cr(5.70 and 9.03), Cu(183.59 and 231.53), Ni(1.33 and 3.23), Pb(13.43 and 17.87), Zn(243.45 and 421.29). DTPA furnished metal extraction yields (%) in WTS and WWTS, respectively as: Cd(11 and 6), Cr (15 and 7), Cu(17 and 13), Ni(23 and 3), Pb(11 and 12), and Zn(37 and 33). The metals were associated with the soluble/exchangeable, carbonate, Mn/Fe-oxide, organic matter and residual forms to varying degrees. Kinetic extractions cumulatively leached metal concentrations akin to the mobilizable fractions extracted sequentially and the leaching data fitted well into the Elovich model. Metal mobilities were concordant for the three leaching procedures and varied in the order:WTS>WWTS. Calculated ecological risk indices suggested moderate and considerable metal toxicity in WTS and WWTS, respectively with Cd as the worst culprit. The findings may be useful in predicting heavy metals bioavailability and risks in the sludges to guide their disposal and use in land applications.

Keywords

References

  1. Abrahim, G.M.S. and Parker, P.J. (2008), "Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand", Environ. Monitor. Assess., 136(1-3), 227-238. https://doi.org/10.1007/s10661-007-9678-2
  2. Alghanmi, S.I., AlSulamia, A.F., El-Zayata, T.A., Alhogbia, B.G. and Salama, M.A (2015), "Acid leaching of heavy metals from contaminated soil collected from Jeddah, Saudi Arabia: kinetic and thermodynamic studies", Soil Water Conserv. Res., 3(3), 196-208. https://doi.org/10.1016/j.iswcr.2015.08.002
  3. Anyakora, N.V. (2013), "Characterisation and performance evaluation of water works sludge as bricks material", J. Eng., 3(3), 8269.
  4. Bai, S., Srikantaswamy, S., Krishnanandan, V. and Naik, O.P. (2012), "Speciation of heavy metals in biosolids of wastewater treatment plants at Mysore, Karnataka, India", Environ. Monitor. Assess., 184(1), 239-249. https://doi.org/10.1007/s10661-011-1964-3
  5. Beckett, P.H.T. (1989), The Use of Extractants in Studies on Trace Metals in Soils, Sewage Sludge, and Sludge-Treated Soils, in Advances in Soil Science, Springer, New York, U.S.A., 143-176.
  6. Canada-Manitoba Soil Survey (2006), Laboratory Methods of Soil Analysis, .
  7. Cappuyns, V. (2012), "A critical evaluation of single extractions from the SMT program to determine trace element mobility in sediments", Appl. Environ. Soil Sci., 1-15.
  8. Clarke, B.O. and Smith, S.R. (2011), "Review of 'emerging' organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids", Environ., 37(1), 226-247.
  9. D'amore, J.J., Al-abed, S.R., Scheckel, K.G. and Ryan, J.A. (2005), "Methods of speciation of metals in soils", J. Environ. Qual., 34(5), 1707-1745. https://doi.org/10.2134/jeq2004.0014
  10. Duan, B., Liu, F., Zhang, W., Zheng, H., Zhang, Q., Li, X. and Bu, Y. (2015), "Evaluation and source apportionment of heavy metals (HMs) in sewage sludge of municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China", J. Environ. Res. Public Health, 12(12), 15807-15818. https://doi.org/10.3390/ijerph121215022
  11. Filgueiras, A.V., Lavilla, I. and Bendicho, C. (2002), "Chemical sequential extraction for metal partitioning in environmental solid samples" J. Environ. Monitor., 4(6), 823-857. https://doi.org/10.1039/b207574c
  12. Gawdzik, J. and Gawdizik, B. (2012), "Mobility of heavy metals in municipal sewage sludge from different throughput sewage treatment plants", Pol. J. Environ. Stud., 21(6), 1603-1611.
  13. Gismera, M.J., Lacal, J., da Silver, P., Garcia, R., Sevilla, M.T. and Procopio, J.R. (2004), "Study of metal fractionation in river sediments. A comparison between kinetic and sequential extraction procedures", Environ. Pollut., 127(2), 175-182. https://doi.org/10.1016/j.envpol.2003.08.004
  14. Hakanson, L. (1980), "An ecological risk index aquatic pollution control. A sedimentological approach", Water Res., 14(8), 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8
  15. Huang, H., Yuan, X., Zeng, G., Zhu, H., Li, H., Liu, Z., Jiang, H., Leng, L. and Bi, W. (2011), "Quantitative evaluation of heavy metals' pollution hazards in liquefaction residues of sewage sludge", Bioresour. Technol., 102(22), 10346-10351. https://doi.org/10.1016/j.biortech.2011.08.117
  16. Ibrahim, A.Q., Onyenekwe, P.C. and Nwaedozie, I.M. (2014), "An efficiency assessment of lower Usuma water treatment plant in Abuja metropolis, Nigeria", IOSR J. Environ. Sci. Toxicol. Food Technol., 8(12), 46-53. https://doi.org/10.9790/2402-081224653
  17. Inengite, A. K., Abasi, C. Y. and Walter, C. (2015), "Application of pollution indices for the assessment of heavy metal pollution in flood impacted soil", Res. J. Pure Appl. Chem., 8(3), 175-189. https://doi.org/10.9734/IRJPAC/2015/17859
  18. Jakubus, M. and Czekala, J. (2001), "Heavy metal speciation in sewage sludge", Pol. J. Environ. Stud., 10(4), 245-250.
  19. Kidd, P.S., Dominguez-Rodriguez, M.J., Diez, J. and Monterroso, C. (2007), "Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge", Chemosphere, 66(8), 1458-1467. https://doi.org/10.1016/j.chemosphere.2006.09.007
  20. Labanowski, J., Monna, F., Bermond, A., Cambier, P., Fernandez, C., Lamy, I. and van Oort, F. (2008), "Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs citrate", Environ. Pollut., 152(3), 693-701. https://doi.org/10.1016/j.envpol.2007.06.054
  21. Levei, E., Miclean, M., Senila, M., Cadar, O., Roman, C. and Micle, V. (2010), "Assessment of Pb, Cd, Cu and Zn availability for plants in Baia Mare mining region", J. Plant Dev., 17, 139-144.
  22. Lewis, D.L. and Gattie, D.K. (2002), "Pathogens risks from applying sewage sludge to land", Environ. Sci. Technol., 36(13), 287-293.
  23. Liu, J. and Sun, S. (2013), "Total concentrations and different fractions of heavy metals in sewage sludge from Guangzhou, China", Trans. Nonferr. Metal. Soc. Chin., 23(8), 2397-2407. https://doi.org/10.1016/S1003-6326(13)62747-8
  24. Manouchehri, N., Besancon, S. and Bermond A. (2011), "Kinetic characterization of trace metal availability using soil/EDTA/Chelex mixture", Chemosphere, 83(7), 997-1004. https://doi.org/10.1016/j.chemosphere.2011.02.010
  25. Manouchehri, N., Nguyen, T.M.L., Besancon, S., Le, L.A. and Bermond, A. (2014), "Use of Sequential, single and kinetic extractive schemes to assess cadmium (Cd) and lead (Pb) availability in Vietnamese urban soils", Amer. J. Anal. Chem., 5(17), 1214-1227. https://doi.org/10.4236/ajac.2014.517128
  26. McLaughlin, M.J., Hamon, R.E., Mclaren, R.G., Speir, T.W. and Rogers, S.L. (2000), "A bioavailabilitybased rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand", Aust. J. Soil Res., 38(6), 1037-1086. https://doi.org/10.1071/SR99128
  27. Miles, L.J. and Parker, G.R. (1979), "DTPA soil extractable and plant heavy metal concentrations with soiladded Cd treatments", Plant Soil, 51(1), 59-68. https://doi.org/10.1007/BF02205927
  28. Morera, M.T., Echeverria, J.C., Mazkiaran, C. and Garrido, J.J. (2001), "Isotherms and sequential extraction procedures for evaluating sorption and distribution of heavy metals in soils", Environ. Pollut., 113(2), 135-144. https://doi.org/10.1016/S0269-7491(00)00169-X
  29. National Environmental Standards and Regulations Enforcement Agency, NESREA (2009), National Environmental (Chemical, Pharmaceutical, Soap and Detergent Manufacturing Industries) Regulations, Federal Republic of Nigeria Official Gazette, B1319-1363.
  30. Nirel, P.V. and Morel, F.M. (1990), "Pitfalls of sequential extractions", Water Res., 24(8), 1055-1056. https://doi.org/10.1016/0043-1354(90)90129-T
  31. Okareh, O.T. and Enesi, O.D. (2015), "Removal of heavy metals from sewage sludge using sugarcane waste extract", J. Sci. Res. Report., 6(6), 439-450. https://doi.org/10.9734/JSRR/2015/16967
  32. Oleszczuk. P. and Hollert. H. (2011), "Comparison of sewage sludge toxicity to plants and invertebrates in three different soils", Chemosphere, 83(4), 502-509. https://doi.org/10.1016/j.chemosphere.2010.12.061
  33. Park, H., Jung, K., Alorro, R.D. and Yoo, K. (2013), "Leaching behavior of copper, zinc and lead from contaminated soil with citric acid", Mater. Trans., 54(7), 1220-1223. https://doi.org/10.2320/matertrans.M2013038
  34. Pueyo, M., Mateu, J., Rigol, A., Vidal, M., Lopez-Sanchez, J.F. and Rauret, J. (2008), "Use of modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils", Environ. Pollut., 152(2), 330-341. https://doi.org/10.1016/j.envpol.2007.06.020
  35. Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W. and Liqiang, Y. (2008), "Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing", J. Chin. Univ. Geosci., 19(3), 230-241. https://doi.org/10.1016/S1002-0705(08)60042-4
  36. Rao, C. R. M., Sahuquillo, A. and Lopez-Sanchez, J.F. (2008), "A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials", Water Air Soil Pollut., 189(1-4), 291-333. https://doi.org/10.1007/s11270-007-9564-0
  37. Semple, K.T., Doick, K.J., Wick, L.Y. and Harms, H. (2007), "Microbial interactions with organic contaminants in soil; definitions, processes and measurements", Environ. Pollut., 150(1), 166-176. https://doi.org/10.1016/j.envpol.2007.07.023
  38. Shiowatana, J., Tantidanai, N., Nookabkaew, S. and Nacapricha, D. (2001), "A novel continuous-flow sequential extraction procedure for metal speciation in solids", J. Environ. Qual., 30(6), 1195-1205. https://doi.org/10.2134/jeq2001.3041195x
  39. Silveira, M.L.A., Alleoni, L.R.F. and Guilherme, L.R.G. (2003), "Biosolids and heavy metals in soils", Scientia Agricola, 60(4), 793-806. https://doi.org/10.1590/S0103-90162003000400029
  40. Song, Q.J. and Greenway, G.M. (2006), "Kinetic speciation of BCR reference materials", J. Environ. Anal. Chem., 86(5), 359-366. https://doi.org/10.1080/03067310500227803
  41. Sun, H., Li, L., Qiao, F. and Liang, S. (2008), "Availability of lead and cadmium in farmland soil and its distribution in individual plants of dry-seeded rice", Commun. Soil Sci. Plant Anal., 39(3-4), 450-460. https://doi.org/10.1080/00103620701826589
  42. Sun, Y.B., Zhou, Q.X., Xie, X.K. and Liu, R. (2009), "Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China", J. Hazard. Mater., 174(1-3), 455-462. https://doi.org/10.1016/j.jhazmat.2009.09.074
  43. Sundaray, S.K., Nayak, B.B., Lin, S. and Bhatta, D. (2011), "Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments-A case study: Mahanadi basin", Indian J. Hazard. Mater., 186(2-3), 1837-1846. https://doi.org/10.1016/j.jhazmat.2010.12.081
  44. Tao, J., Wu, S., Sun, L., Tan, X., Yu, S. and Zhang, Z. (2012), "Composition of waste sludge from municipal wastewater treatment plant", Proc. Environ. Sci., 12, 964-971. https://doi.org/10.1016/j.proenv.2012.01.372
  45. Tessier A., Campbell, P.G.C. and Bisson, M. (1979), "Sequential extraction procedure for the speciation of particulate trace metals", Anal. Chem., 51(7), 844-851. https://doi.org/10.1021/ac50043a017
  46. Tokalioglu, S., Kartal, S. and Gultekin, A. (2006), "Investigation of heavy-metal uptake by vegetables growing in contaminated soils using the modified BCR sequential extraction method", J. Environ. Anal. Chem., 86(6), 417-430. https://doi.org/10.1080/03067310500352387
  47. Topcuoglu, B. (2015), "Chemical speciation, bioavailability and environmental pollution risks of heavy metals in the greenhouse soil amended with sewage sludge and municipal solid waste compost", J. Adv. Agric. Environ. Eng., 2(2), 72-78.
  48. Tsai, L.J., Yu, K.C., Chen, S.F., Kung, P.Y., Chang, C.Y. and Lin, C.H. (2003), "Partitioning variation of heavy metals in contaminated river sediment via bioleaching: effect of sulfur added to total solids ratio", Water Res., 37(19), 4623-4630. https://doi.org/10.1016/j.watres.2003.07.003
  49. Usman, K., Khan, S., Ghulam, S., Khan, M.U., Khan, N., Khan, M.A. and Khalil, S.K. (2012), "Sewage sludge: An important biological resource for sustainable agriculture and its environmental implications", Amer. J. Plant Sci., 3(2), 1708-1721. https://doi.org/10.4236/ajps.2012.312209
  50. Wasay, S.A., Barrington, S., Tokunagal, S. and Prasher, S. (2007), "Kinetics of heavy metal desorption from three soils using citric acid, tartaric acid, and EDTA", J. Environ. Eng. Sci., 6(6), 611-622. https://doi.org/10.1139/S07-004
  51. Wuana, R.A., Adie, P.A. and Asegh, I.N. (2012), "Seasonal variation in bioavailability of some toxic metals in waste dump soils of Makurdi, North-Central Nigeria", J. Biodiver. Environ. Sci., 2(11), 7-17.
  52. Zimmerman, A.J. and Weindorf, D.C. (2010), "Heavy metal and trace metal analysis in soil by sequential extraction: A review of procedures", J. Anal. Chem., 1-7.