References
- E. Bursztein, J. Aigrain, A. Moscicki, and J. C. Mitchell, "The End is Nigh: Generic Solving of Text-based CAPTCHAs," Usenix Woot, 2014. https://www.usenix.org/node/185129
- https://www.google.com/recaptcha/intro/invisible.html
- B. M. Powell, E. Kalsy, G. Goswami, M. Vatsa, R. Singh, and A. Noore, "Attack-Resistant aiCAPTCHA using a Negative Selection Artificial Immune System," urity and Privacy Workshops (SPW), IEEE, pp. 1-6, 2017. https://doi.org/10.1109/SPW.2017.22
- K. Chellapilla, K. Larson, P. Simard, and M. Czerwinski, "Computers beat humans at single character recognition in reading based human interaction proofs (HIPs)," in Proc. of Second Conf. Email Anti-Spam, 2005. https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/CEAS2005Final.doc
- E. Bursztein, M. Martin, and J. C. Mitchell, "Textbased CAPTCHA strengths and weaknesses," in Proc. of 18th ACM Conf. Comput. Commun. Secur., ISBN: 978-1-4503-0948-6, pp. 125-138. 2011. https://doi.org/10.1145/2046707.2046724
- C. Cruz-Perez, O. Starostenko, F. Uceda-Ponga, V. Alarcon- Aquino, and L. Reyes-Cabrera, "Breaking reCAPTCHAs with unpredictable collapse: Heuristic character segmentation and recognition," Pattern Recognition, vol. 7329, pp. 155-165, 2012. https://link.springer.com/chapter/10.1007/978-3-642-31149-9_16
- K. Kim, D. Shin, K. Lee and D. Nyang, "CAPTCHA Analysis using Convolution Filtering," Journal of The Korea Institute of Information Security & Cryptology, Vol. 24, no. 6, pp. 1129-1138, 2014. http://dx.doi.org/10.13089/JKIISC.2014.24.6.1129
- J. Kim, S. Kim, and H. J. Kim, "Breaking character and natural image based CAPTCHA using feature classification," Journal of The Korea Institute of Information Security & Cryptology, Vol. 25, no. 5, pp. 1011-1019, 2015. http://dx.doi.org/10.13089/JKIISC.2015.25.5.1011
- J. Xie, L. Xu, and E. Chen, "Image Denoising and Inpainting with Deep Neural Networks," Nips, pp. 1-9, 2012. https://papers.nips.cc/paper/4686-image-denoising-and-in painting-with-deep-neural-networks
- Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy Layer-Wise Training of Deep Networks," Adv. Neural Inf. Process. Syst., Vol. 19, no. 1, pp. 153-160, 2007.
- P. Vincent, H. Larochelle, Y. Bengio, and P.A. Manzagol, "Extracting and composing robust features with denoising autoencoders," in Proc. of 25th Int. Conf. Mach. Learn. - ICML '08, pp. 1096-1103, 2008. http://machinelearning.org/archive/icml2008/papers/592.pdf
- A. Ng, "CS229 Lecture notes," CS229 Lecture notes, pp. 1-30, 2000.
- P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.A. Manzagol, "Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion," J. Mach. Learn. Res., Vol. 11, pp. 3371-3408, 2010. http://www.jmlr.org/papers/v11/vincent10a.html
- G. E. Hinton and R. R. Salakhutdinov, "Reducing the Dimensionality of Data with Neural Networks," Science, Vol. 313, no. 5786, pp. 504-507, 2006. https://doi.org/10.1126/science.1127647
- A. Ng, "Sparse autoencoder," CS294A Lect. notes, 2011, pp. 1-19.
- G. E. Hinton, S. Osindero, and Y. W. Teh, "A fast learning algorithm for deep belief nets," Neural Comput., Vol. 18, no. 7, pp. 1527-54, 2006. https://www.cs.toronto.edu/-hinton/absps/fastnc.pdf https://doi.org/10.1162/neco.2006.18.7.1527
- http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/
- https://nid.naver.com/login/image/captcha/nhncaptchav4.gif?key=
- J. Canny, "A Computational Approach to Edge Detection," IEEE Trans. Pattern Anal. Mach. Intell., Vol. PAMI-8, no. 6, pp. 679-698, 1986. htps://doi.org/10.1109/TPAMI.1986.4767851
- A. Geron, "Hands on Machine Learning with scikit-learn and Tensorflow," 2017
- T. Amaral, L. M. Silva, L. A. Alexandre, C. Kandaswamy, J. M. Santos, and J. M. De Sa, "Using different cost functions to train stacked auto-encoders," Artificial Intelligence (MICAI), 2013 12th Mexican International Conference on, pp. 114-120, 2013. https://doi.org/10.1109/MICAI.2013.20