DOI QR코드

DOI QR Code

백두산 지역의 마이오세 알칼리 현무암에 포획된 페리도타이트의 암석학적/지화학적 특성

Petrology and Geochemistry of Peridotite Xenoliths from Miocene Alkaline Basalt Near the Mt. Baekdu Area

  • 김은주 (부산대학교 지질환경과학과) ;
  • 박근영 (부산대학교 지질환경과학과) ;
  • 김선웅 (부산대학교 지질환경과학과) ;
  • 길영우 (전남대학교 에너지자원공학과) ;
  • 양경희 (부산대학교 지질환경과학과)
  • Kim, Eunju (Department of Geological Sciences, Pusan National University) ;
  • Park, Geunyeong (Department of Geological Sciences, Pusan National University) ;
  • Kim, Sunwoong (Department of Geological Sciences, Pusan National University) ;
  • Kil, Youngwoo (Department of Energy and Resources Engineering, Chonnam National University) ;
  • Yang, Kyounghee (Department of Geological Sciences, Pusan National University)
  • 투고 : 2017.09.05
  • 심사 : 2017.10.24
  • 발행 : 2017.12.31

초록

백두산 지역 중기 마이오세 알칼리현무암에 포획된 페리도타이트 포획암은 주로 첨정석 레졸라이트로 조립질의 원생입상 조직을 보인다. 이 포획암들은 감람석을 치환하는 이차기원의 사방휘석과 감람석 결정입자의 경계를 따라 멜트(즉, 유리)를 산출하고 있다. 백두산 페리도타이트 포획암의 감람석, 사방휘석 그리고 단사휘석은 높은 Mg#(90~92), 첨정석의 Cr#는 11~29를 나타낸다. 백두산 페리도타이트 포획암의 주성분원소 성분은 심해 페리도타이트의 특성을 나타낸다. 단사휘석은 불호정성 미량원소에 부화되어 있으며, 두 종류의 미량원소 패턴을 보여준다.: (1) 경희토류원소가 결핍된 형태($(La/Yb)_N=0.1{\sim}0.2$, $(La/Ce)_N=0.4{\sim}0.8$). (2) 경희토류원소가 부화된 형태($(La/Yb)_N=2.2{\sim}3.8$, $(La/Ce)_N=1.2{\sim}1.6$). 계산된 평형 온도와 산소 분압은 각각 $920{\sim}1050^{\circ}C$${\Delta}fO_2(QFM)=-0.8{\sim}0.2$이다. 백두산 페리도타이트 포획암들은 최대 15% 정도의 마그마를 만들고 난 후 맨틀에 남아있는 잔류 암석으로, 그 이후 실리카와 경희토류원소에 부화된 유체(혹은 멜트)에 의해 다양한 정도의 모달/은폐 교대작용을 경험하였음을 반영하고 있다.

Peridotite xenoliths in middle Miocene alkaline basalt from the Mt. Baekdu area are mainly anhydrous spinel lherzolites, displaying coarse-grained protogranular texture. These xenoliths have late-stage secondary orthopyroxene replacing olivine as the metasomatic mineral and glass formed along the grain boundaries. The studied xenoliths are characterized by the high $Mg{\sharp}[=100{\times}Mg/(Mg+Fe_{total})$ atomic ratio] of olivine, orthopyroxene and clinopyroxene (89~92) and the $Cr{\sharp}[=100{\times}Cr/(Cr+Al)$ atomic ratio] of spinel (10~29). Based on major-element data, the studied xenoliths are similar to those from the abyssal peridotites. Clinopyroxenes of the xenoliths are mostly enriched in incompatible trace elements, exhibiting two types of REE patterns: (1) LREE-depleted with $(La/Yb)_N$ of 0.1~0.2 and $(La/Ce)_N$ of 0.4~0.8. (2) LREE enriched with $(La/Yb)_N$ of 2.2~3.8 and $(La/Ce)_N$ of 1.2~1.6. The calculated equilibrium temperatures and oxygen fugacities resulted in $920{\sim}1050^{\circ}C$ and ${\Delta}fO_2(QFM)=-0.8{\sim}0.2$, respectively. It is suggested that the Mt. Baekdu peridotite xenoliths represent residues left after variable degrees of melt extraction(less than 15 vol%), which was subsequently subjected to different degrees of modal/cryptic metasomatism by silica- and LREE-enriched fluids (or melts).

키워드

참고문헌

  1. Arai, S., 1994, Compositional variation of of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites, Journal of Volcanology and Geothermal Research, 59, 279-293. https://doi.org/10.1016/0377-0273(94)90083-3
  2. Arai, S. and Ishimaru, S., 2008, Insights into petrological characteristics of the lithosphere of mantle wedge beneath arcs through peridotite xenoliths: a review. Journal of Petrology, 49, 665-695.
  3. Ballhaus, C., Berry, R.F. and Green, D.H., 1991, High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contributions to Mineralogy and Petrology, 107, 22-40.
  4. Choi, S.H., Lee, J.I., Park, C.H. and Moutte, J., 2002, Geochemistry of peridotite xenoliths in alkali basalts from Jeju Island, Korea. The Island Arc, 11, 221-235. https://doi.org/10.1046/j.1440-1738.2002.00367.x
  5. Coltorti, M., Beccaluva, L., Bonadiman, C., Salvini, L., and Siena F., 2000, Glasses in mantle xenoliths as geochemical indicators of metasomatic agents. Earth and Planetary Science Letters, 183, 303-320. https://doi.org/10.1016/S0012-821X(00)00274-0
  6. Dewey, J.F. and Lamb, S.H., 1992, Active tectonics of the Andes. Tectonophysics, 205, 79-95. https://doi.org/10.1016/0040-1951(92)90419-7
  7. Downes, H., Macdonald, R., Upton, B.G.J., Cox, K.G., Bodinier, J.-L., Mason, P.R.D., James, D., Hill, P.G. and Hearn, B.C., Jr, 2004, Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton. Journal of Petrology, 45, 1631-1662. https://doi.org/10.1093/petrology/egh027
  8. Dygert, N., and Liang, Y, 2015, Temperatures and cooling rates recorded in REE in coexisting pyroxenes in ophiolitic and abyssal peridotites. Earth and Planetary Science Letter, 420, 151-161. https://doi.org/10.1016/j.epsl.2015.02.042
  9. Frey, F.A. and Prinz, M., 1978, Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters, 38, 129-176. https://doi.org/10.1016/0012-821X(78)90130-9
  10. Grégoire, M., McInnes, B.I.A. and O'Reilly. S.Y., 2001, Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea Part 2. Trace element characteristics of slab-derived fluids. Lithos, 59, 91-108. https://doi.org/10.1016/S0024-4937(01)00058-5
  11. Grégoire, M., Chevet, J. and Maaloe, S., 2010, Composite xenoliths from Spitsbergen: evidence of the circulation of MORB-related melts within the upper mantle. Geological Society, London, Special Publications, 337, 71-86. https://doi.org/10.1144/SP337.4
  12. Ichiyama, Y., Morishita, T., Tamura, A. and Arai, S., 2016, Peridotite xenoliths from the Shiribeshi Seamount, Japan Sea: insights into mantle processes in a back-arc basin. Contributions to Mineralogy and Petrology, 171:86. DOI 10.1007/s00410-016-1300-6
  13. Ionov, D.A. and Hofmann, A.W., 1995, Nb, Ta-rich mantle amphiboles and micas: Implications for subduction-related metasomatic trace element fractionations. Earth and Planetary Science Letters, 131, 341-356. https://doi.org/10.1016/0012-821X(95)00037-D
  14. Jwa, Y., Lee, J. and Zheng, X., 2003, A study on the eruption ages of Baekdusan: 1. Radiocarbon ($^{14}C$) age for charcoal and wood samples. Journal of the Geological Society of Korea, 39, 347-357.
  15. Jolivet, L., Tamaki, K. and Fournier, M., 1994, Japan Sea, opening history and mechanism: a synthesis. Journal of Geophysics Resourch, 99, 22237-22259. https://doi.org/10.1029/93JB03463
  16. Kaneoka, I., Takigami, Y., Takaoka, N., Yamashita, S. and Tamaki, K., 1992, $^{40}Ar-^{39}Ar$ analysis of volcanic rocks recovered from the Japan Sea floor: constraints on the age of formation of the Japan. In: Tamaki K, Suyehiro K, Allan J, McWilliams S (eds) Proceedings of the Ocean Drilling Program Scientific Result, 127/128, College Station, Texas (Ocean Drilling Program), 819-836
  17. Kelemen, P.B., Hart, S.R. and Bernstein, S., 1998, Silica enrichment in the continental upper mantle via melt/rock reaction. Earth and Planetary Science Letters, 164, 387-406. https://doi.org/10.1016/S0012-821X(98)00233-7
  18. Keppler, H., 1996, Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380, 237-240. https://doi.org/10.1038/380237a0
  19. Kil, Y. and Wendlandt, R.F., 2004, Pressure and temperature evolution of upper mantle under the Rio Grande Rift. Contributions to Mineralogy and Petrology, 148, 265-280. https://doi.org/10.1007/s00410-004-0608-9
  20. Köhler, T.P. and Brey, G.P., 1990, Calcium exchange between olivine and clinopyroxene calibrated as a geobarometer for natural peridotites from 2 to 60 kb with mantle transition zoneapplications. Geochimica et Cosmochimica Acta, 54, 2375-2388. https://doi.org/10.1016/0016-7037(90)90226-B
  21. Kuritani, T., Ohtani, E. and Kimura, J.-I., 2011, Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nature Geoscience, 4, 713-716. https://doi.org/10.1038/ngeo1250
  22. Lee, D., 1991, The eruption stratigraphy and volcanism in the Mt. Baekdu area. '91 International science and technology meeting (Abstract), The Korean-Chinese scientific association, 21
  23. Liu, T.G., 1983, The study on cenozoic volcanism in the Jangbaksan, the survey of geology in academy house, China, 343-355 (in Chinese).
  24. Manning, C.E., 2004, Chemistry of subduction-zone fluids. Earth and Planetary Science Letters, 223, 1-16. https://doi.org/10.1016/j.epsl.2004.04.030
  25. McCulloch, M.T. and Gamble, J.A., 1991, Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102, 358-374. https://doi.org/10.1016/0012-821X(91)90029-H
  26. McDonough, W.F. and Sun, S.S., 1995, The composition of the Earth. Chemical Geology, 120, 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
  27. McInnes, B.I.A., Gregoire, M., Binns, R.A., Herzig, P.M. and Hannington, M.D., 2001, Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: Petrology and geochemistry of fluid-metasomatised mantle wedge xenoliths. Earth and Planetary Science Letters, 188, 169-183. https://doi.org/10.1016/S0012-821X(01)00306-5
  28. Mercier, J.C.C. and Nicolas, A., 1975, Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. Journal of Petrology, 16, 454-487. https://doi.org/10.1093/petrology/16.1.454
  29. Ntaflos, T., Tschegg, C., Coltorti, M., Akinin, V. V., and Kosler, J., 2008, Asthenospheric signature in fertile spinel lherzolites from the Viliga Volcanic Field in NE Russia. Metasomatism in Oceanic and Continental Lithospheric Mantle (eds. Coltorti, M., & Gregoire, M.), Geological Society, London, Special Publications, 293, 57-81. https://doi.org/10.1144/SP293.4
  30. Otofuji, Y., Mastuda, T. and Nohda, S., 1985, Paleomagnetic evidence for the Miocene counter-clockwise rotation of Northeast Japanç rifting process of the Japan Sea. Earth and Planetary Science Letters, 72, 265-277.
  31. Perinelli, C., Sapienza, G.T., Armienti, P. and Morten, L., 2008, Metasomatism of the upper mantle beneath the Hyblean Plateau (Sicily): evidence from pyroxenes and glass in peridotite xenoliths. In: Coltorti, M., Gregoire, M. (Eds.), Metasomatism in oceanic and continental lithospheric mantle: Geological Society of London Special Publication 293, 197-222. https://doi.org/10.1144/SP293.10
  32. Ramos, V.A., 1999, Plate tectonic setting of the Andean Cordillera. Epiodes, 22, 183-190.
  33. Rampone, E., Bottazzi, P. and Ottolini, L., 1991, Complementary Ti and Zr anomalies in orthopyroxene and clinopyroxene from mantle peridotites. Nature, 354, 518-520. https://doi.org/10.1038/354518a0
  34. Sager, W.W., Handschumacher, D.W., Hilde, T.W.C., Bracey, D.R., 1988. Tectonic evolution of the northern Pacific plate and Pacific-Farallon-Izanagi triple junction in the late Jurassic and early Cretaceous. Tectonophysics, 155, 345-364. https://doi.org/10.1016/0040-1951(88)90274-0
  35. Smith, D., Riter, J.C.A. and Mertzman, S.A., 1999, Erratum to ''water-rock interactions, orthopyroxene growth and Sienrichment in the mantle: evidence in xenoliths from the Colorado Plateau, southwestern United States''. Earth and Planetary Science Letters, 167, 347-356. https://doi.org/10.1016/S0012-821X(99)00027-8
  36. Spera, F. J. 1980. Aspects of magma transport. In: HARGRAVES, R. B. (ed.) Physics of Magmatic Processes. Princeton University Press, Princeton, NJ, 265-324.
  37. Steinberger, B. and Gaina, C., 2007, Plate-tectonic reconstructions predict part of the Hawaiian hotspot track to be preserved in the Bering Sea. Geology, 35, 407-410. https://doi.org/10.1130/G23383A.1
  38. Sun, S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geological Society of London Special Publication, 42, 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  39. Szabo, C., Falus, G., Zajacz, Z., Kovacs, I. and Bali, E., 2004, Composition and evolution of lithosphere beneath the Carpathian-Pannonian Region: a review. Tectonophysics, 393, 119-137. https://doi.org/10.1016/j.tecto.2004.07.031
  40. Tamaki, K., Suyehiro, K., Allan, J., Ingle, Jr. J.C., and Pisciotto, K.A., 1992, Tectonic synthesis and implications of Japan Sea ODP drilling. Proceedings of the Ocean Drilling Program Scientific Result, 127/128, Texas, 1333-1348.
  41. Tang., Y., Obayashi, M., Niu, F., Grand, S. P., Chen, Y. J., Kawakatsu, H., Tanaka, S., Ning, J., Ni, J.F., 2014, Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling. Nature Geoscience, 7, 470-475. https://doi.org/10.1038/ngeo2166
  42. Tatsumi, Y., Shukuno, H., Yoshikawa, M., Chang, Q., Sato, K. and Lee, M.W., 2005, The petrology and geochemistry of volcanic rocks on Jeju Island: plume magmatism along the Asian continental margin. Journal of Petrology, 46, 523-553.
  43. Webb, S.A.C. and Wood, B.J., 1986, Spinel-pyroxene-garnet relationships and their dependence on Cr/Al ratio. Contributions to Mineralogy and Petrology, 92, 471-480. https://doi.org/10.1007/BF00374429
  44. Woo, Y., Yang, K., Kil, Y., Yun, S. and Arai, S., 2014, Silica-and LREE-enriched spinel peridotite xenoliths from the Quaternary intraplate alkali basalt, Jeju Island, South Korea: Old subarc fragments? Lithos, 208-209, 2014, 312-323. https://doi.org/10.1016/j.lithos.2014.09.003
  45. Xu, Y., Menzies, M.A., Pieter, V., Mercier, J.-C. and Lin, C., 1998, Texture-Temperature-Geochemistry relationships in the upper mantle as revealed from spinel peridotite xenoliths from Wangqing, NE China. Journal of Petrology, 39, 469-493. https://doi.org/10.1093/petroj/39.3.469
  46. Xu, X., O'Reilly, S.Y., Griffin, W.L. and Zhou, X., 2000, Genesis of young lithospheric mantle in southeastern China: an LAM-ICPMS trace element study. Journal of Petrology, 41, 111-148. https://doi.org/10.1093/petrology/41.1.111
  47. Ye, H., Zhang, B. and Mao, F., 1987, The Cenozoic tectonic evolution of the Great North China: two types of rifting and crustal necking in the Great North China and their tectonic implications. Tectonophysics, 133, 217-227. https://doi.org/10.1016/0040-1951(87)90265-4
  48. Yu, J., Yang, K., and Kim, J., 2010, Textural and Geochemical characteristics and their relation of spinel peridotite xenoliths from Jeju Island. The Journal of the Petrological Society of Korea, 19, 227-244.
  49. Yun, S., Won, C. and Lee, M., 1993, Cenozoic volcanic activity and petrochemistry of volcanic rocks in the Mt. Paektu area. Journal of Geological Society of Korea, 29, 291-307 (Korean with English abstract).
  50. Yun, S., Koh, J., and Anh, J., 1998, A Study on the Spinel-Lherzolite Xenoliths in the Alkali Basalt from Eastern Cheju Island, Korea. Economic and environmental geology, 31, 447-458.
  51. Yun, S., and Koh, J., 2014, Petrochemical characteristics of volcanic rocks of historic era at Mt. Baekdusan. Journal of the Geological Society of Korea, 50, 753-769. https://doi.org/10.14770/jgsk.2014.50.6.753
  52. Zhao, D., Tian, Y., Lei, J., Liu, L. and Zheng, S., 2009, Seismic image and origin of the Changbai intraplate volcano in East Asia: Role of big mantle wedge above the stagnant Pacific slab. Physics of the Earth and Planetary Interiors, 173, 197-206. https://doi.org/10.1016/j.pepi.2008.11.009