DOI QR코드

DOI QR Code

Analysis of Lipids in Deciduous Teeth by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI MS)

  • Lee, Yujin (Department of Chemistry, Hankuk University of Foreign Studies) ;
  • Seo, Eunji (Department of Chemistry, Hankuk University of Foreign Studies) ;
  • Park, Tae-Min (Department of Chemistry, Hankuk University of Foreign Studies) ;
  • Bae, Kwang-Hak (Oral Health Science Research Center, Apple tree Dental Hospital) ;
  • Cha, Sangwon (Department of Chemistry, Hankuk University of Foreign Studies)
  • Received : 2017.11.26
  • Accepted : 2017.12.01
  • Published : 2017.12.30

Abstract

Recently, deciduous teeth have been proposed as a promising biomatrix for estimating internal and external chemical exposures of an individual from prenatal periods to early childhood. Therefore, detection of organic chemicals in teeth has received increasing attention. Organic materials in tooth matrix are mostly collagen type proteins, but lipids and other small organic chemicals are also present in the tooth matrix. In this study, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) was employed to obtain lipid fingerprints from deciduous teeth. Phospholipids and triacylglcerols (TAGs) from deciduous teeth were successfully detected by MALDI MS with 2,5-dihydroxybenzoic acid (DHB) or gold nanoparticle (AuNP) as a matrix.

Keywords

References

  1. Vrijheid, M. Thorax 2014, 69, 876. https://doi.org/10.1136/thoraxjnl-2013-204949
  2. Andra, S. S.; Austin, C.; Arora, M. Curr. Opin. Pediatr. 2016, 28, 221. https://doi.org/10.1097/MOP.0000000000000327
  3. Hare, D.; Austin, C.; Doble, P.; Arora, M. J. Dent. 2011, 39, 397. https://doi.org/10.1016/j.jdent.2011.03.004
  4. Lochner, F.; Appleton, J.; Keenan, F.; Cooke, M. Anal. Chim. Acta 1999, 401, 299. https://doi.org/10.1016/S0003-2670(99)00476-6
  5. Andra, S. S.; Austin, C.; Arora, M. Environ. Res. 2015, 142, 387. https://doi.org/10.1016/j.envres.2015.06.032
  6. Andra, S. S.; Austin, C.; Wright, R. O.; Arora, M. Environ. Int. 2015, 83, 137. https://doi.org/10.1016/j.envint.2015.05.010
  7. Brauer, D. S.; Saeki, K.; Hilton, J. F.; Marshall, G. W.; Marshall, S. J. Dent. Mater. 2008, 24, 1137. https://doi.org/10.1016/j.dental.2008.02.016
  8. Goldberg, M.; Kulkarni, A. B.; Young, M.; Boskey, A. Front. Biosci. (Elite Ed.) 2011, 3, 711.
  9. Odutuga, A. A.; Prout, R. E. S. Archs. Oral Biol. 1973, 18, 689. https://doi.org/10.1016/0003-9969(73)90004-6
  10. Rabinowitz, J. L.; Rossman, S. Archs. Oral Biol. 1979, 24, 477. https://doi.org/10.1016/0003-9969(79)90011-6
  11. Lee, G.; Son, J.; Cha, S. Bull. Kor. Chem. Soc. 2013, 34, 2143. https://doi.org/10.5012/bkcs.2013.34.7.2143
  12. Cha, S.; Yeung, E. S. Anal. Chem. 2007, 79, 2373. https://doi.org/10.1021/ac062251h
  13. Hirano, H.; Masaki, N.; Hayasaka, T.; Watanabe, Y.; Masumoto, K.; Nagata T.; Katou, F.; Setou, M. Anal. Bioanal. Chem. 2014, 406, 1355. https://doi.org/10.1007/s00216-013-7075-y
  14. Fuchs, B.; Suss, R.; Schiller, J. Prog. Lipid Res. 2010, 49, 450. https://doi.org/10.1016/j.plipres.2010.07.001
  15. Emerson, B.; Gidden, J.; Lay Jr., J. O.; Durham, B. J. Lipid Res. 2010, 51, 2428. https://doi.org/10.1194/jlr.D003798
  16. Son, J.; Lee, G.; Cha, S. J. Am. Soc. Mass Spectrom. 2014, 25, 891. https://doi.org/10.1007/s13361-014-0844-9