DOI QR코드

DOI QR Code

Parametric identification of the Bouc-Wen model by a modified genetic algorithm: Application to evaluation of metallic dampers

  • Shu, Ganping (School of Civil Engineering, Southeast University) ;
  • Li, Zongjing (School of Civil Engineering, Southeast University)
  • 투고 : 2017.09.23
  • 심사 : 2017.12.27
  • 발행 : 2017.10.25

초록

With the growing demand for metallic dampers in engineering practice, it is urgent to establish a reasonable approach to evaluating the mechanical performance of metallic dampers under seismic excitations. This paper introduces an effective method for parameter identification of the modified Bouc-Wen model and its application to evaluating the fatigue performance of metallic dampers (MDs). The modified Bouc-Wen model which eliminates the redundant parameter is used to describe the hysteresis behavior of MDs. Relations between the parameters of the modified Bouc-Wen model and the mechanical performance parameters of MDs are studied first. A modified Genetic Algorithm using real-integer hybrid coding with relative fitness as well as adaptive crossover and mutation rates (called RFAGA) is then proposed to identify the parameters of the modified Bouc-Wen model. A reliable approach to evaluating the fatigue performance of the MDs with respect to the Chinese Code for Seismic Design of Buildings (GB 50011-2010) is finally proposed based on the research results. Experimental data are employed to demonstrate the process and verify the effectiveness of the proposed approach. It is shown that the RFAGA is able to converge quickly in the identification process, and the simulation curves based on the identification results fit well with the experimental hysteresis curves. Furthermore, the proposed approach is shown to be a useful tool for evaluating the fatigue performance of MDs with respect to the Chinese Code for Seismic Design of Buildings (GB 50011-2010).

키워드

참고문헌

  1. Bhaskararao, A.V. and Jangid, R.S. (2006), "Seismic analysis of structures connected with friction dampers", Eng. Struct., 28(5), 690-703. https://doi.org/10.1016/j.engstruct.2005.09.020
  2. Bouc, R. (1967), "Forced vibration of mechanical systems with hysteresis", Proceedings of the 4th Conference on Nonlinear Oscillation, Prague, Czechoslovakia, September.
  3. Chan, R.W.K., Albermani, F. and Williams, M.S. (2009), "Evaluation of yielding shear panel device for passive energy dissipation", J. Constr. Steel Res., 65(2), 260-268. https://doi.org/10.1016/j.jcsr.2008.03.017
  4. Charalampakis, A.E. and Koumousis, V.K. (2008), "Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm", J. Sound Vibr., 314(3), 571-585. https://doi.org/10.1016/j.jsv.2008.01.018
  5. Chen, Z., Ge, H. and Usami, T. (2006), "Hysteretic model of stiffened shear panel dampers", J. Struct. Eng., 132(3), 478-483. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:3(478)
  6. Chinese Code for Seismic Design of Buildings (GB 50011-2010), Ministry of Housing and Urban-Rural Construction of People's Republic of China, Beijing, China.
  7. De La Llera, J.C., Esguerra, C. and Almazan, J.L. (2004), "Earthquake behavior of structures with copper energy dissipators", Earthq. Eng. Struct. Dyn., 33(3), 329-358. https://doi.org/10.1002/eqe.354
  8. Deng, K., Pan, P., Li, W. and Xue, Y. (2015), "Development of a buckling restrained shear panel damper", J. Constr. Steel Res., 106, 311-321. https://doi.org/10.1016/j.jcsr.2015.01.004
  9. Dusicka, P., Itani, A.M. and Buckle, I.G. (2010), "Cyclic behavior of shear links of various grades of plate steel", J. Struct. Eng., 136(4), 370-378. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000131
  10. Dyke, S.J., Spencer, B.F., Sain, M.K. and Carlson, J.D. (1996), "Modeling and control of magnetorheological dampers for seismic response reduction", Smart Mater. Struct., 5(5), 565-575. https://doi.org/10.1088/0964-1726/5/5/006
  11. Fujino, Y., Sun, L., Pacheco, B.M. and Chaiseri, P. (1993), "Tuned liquid damper (TLD) for suppressing horizontal motion of structures", J. Eng. Mech., 118(10), 2017-2030. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:10(2017)
  12. Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley New York, U.S.A.
  13. Ha, J., Kung, Y., Fungc, R. And Hsien, S.C. (2006), "A comparison of fitness functions for the identification of a piezoelectric hysteretic actuator based on the real-coded genetic algorithm", Sens. Actuat. A: Phys., 132(2), 643-650. https://doi.org/10.1016/j.sna.2006.02.022
  14. Han, Q., Jia, J., Xu, Z., Bai, Y. and Song, N. (2014), "Experimental evaluation of hysteretic behavior of rhombic steel plate dampers", Adv. Mech. Eng., 2014, 1-8.
  15. Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, Michigan, U.S.A.
  16. Housner, G., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F. and Yao, J.T. (1997), "Structural control past, present, and future", J. Eng. Mech., 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
  17. Ismail, M., Ikhouane, F. and Rodellar, J. (2009), "The hysteresis Bouc-Wen model, a survey", Arch. Comput. Meth. Eng., 16(2), 161-188. https://doi.org/10.1007/s11831-009-9031-8
  18. Ji, X., Wang, Y., Ma, Q. and Okazaki, T. (2016), "Cyclic behavior of very short steel shear links", J. Struct. Eng., 142(2), 04015114. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001375
  19. Kwok, N.M., Ha, Q.P., Nguyen, M.T., Li, J. and Samali, B. (2007), "Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA", ISA Trans., 46(2), 167-179. https://doi.org/10.1016/j.isatra.2006.08.005
  20. Kyprianou, A., Worden, K. and Panet, M. (2001), "Identification of hysteresis systems using the differential evolution algorithm", J. Sound Vibr., 248(2), 289-314. https://doi.org/10.1006/jsvi.2001.3798
  21. Lee, C.H., Lho, S.H., Kim, D.H., Oh, J. and Ju, Y.K. (2016), "Hourglass-shaped strip damper subjected to monotonic and cyclic loadings", Eng. Struct., 119, 122-134. https://doi.org/10.1016/j.engstruct.2016.04.019
  22. Lee, D. and Taylor, D.P. (2010), "Viscous damper development and future trends", Struct. Des. Tall Spec. Build., 10(5), 311-320.
  23. Li, Z.J., Huang, Z. and Li, A.Q. (2013), "Theoretical and experimental study of new type of mild steel plate damper with opening", J. Southeast Univ., 43(2), 392-397.
  24. Lin, W.H. and Chopra, A.K. (2002), "Earthquake response of elastic SDF systems with non-linear fluid viscous dampers", Earthq. Eng. Struct. Dyn., 31(9), 1623-1642. https://doi.org/10.1002/eqe.179
  25. Liu, Y., Yang, S., Liao, Y.Y. and Zhang, G.N. (2011), "Parameter identification of Bouc-Wen model for MR damper based on genetic algorithm", J. Vibr. Shock, 30(7), 261-265.
  26. Ma, F., Ng, C.H. and Ajavakom, N. (2006), "On system identification and response prediction of degrading structures", Struct. Contr. Health Monitor., 13, 347-364. https://doi.org/10.1002/stc.122
  27. Ma, F., Zhang, H., Bockstedte, A., Foliente, G.C. and Paevere, P. (2004), "Parameter analysis of the differential model of hysteresis", J. Appl. Mech., 71(3), 342-349. https://doi.org/10.1115/1.1668082
  28. Mualla, I.H. and Belev, B. (2002), "Performance of steel frames with a new friction damper device under earthquake excitation", Eng. Struct., 24(3), 365-371. https://doi.org/10.1016/S0141-0296(01)00102-X
  29. Park, S.W. (2001), "Analytical modeling of viscoelastic dampers for structural and vibration control", J. Sol. Struct., 38(44), 8065-8092. https://doi.org/10.1016/S0020-7683(01)00026-9
  30. Rana, R. and Soong, T.T. (1998), "Parametric study and simplified design of tuned mass dampers", Eng. Struct., 20(3), 193-204. https://doi.org/10.1016/S0141-0296(97)00078-3
  31. Rudolph, G. (1994), "Convergence analysis of canonical genetic algorithms", IEEE Trans. Neur. Netw., 5(1), 96-101. https://doi.org/10.1109/72.265964
  32. Shih, M. and Sung, W. (2005), "A model for hysteretic behavior of rhombic low yield strength steel added damping and stiffness", Comput. Struct., 83(12-13), 895-908. https://doi.org/10.1016/j.compstruc.2004.11.012
  33. Sireteanu, T., Mitu, A.M., Giuclea, M. and Solomon, O. (2014), "A comparative study of the dynamic behavior of Ramberg-Osgood and Bouc-Wen hysteresis models with application to seismic protection devices", Eng. Struct., 76, 255-269. https://doi.org/10.1016/j.engstruct.2014.07.002
  34. Soong, T.T. and Spencer, B.F. (2002), "Supplemental energy dissipation: State-of-the-art and state-of-the-practice", Eng. Struct., 24, 243-259. https://doi.org/10.1016/S0141-0296(01)00092-X
  35. Srinivas, M. and Patnaik, L.M. (1994), "Adaptive probabilities of crossover and mutation in genetic algorithms", IEEE Trans. Syst. Man Cybernet., 24(4), 656-667. https://doi.org/10.1109/21.286385
  36. Tehranizadeh, M. (2001), "Passive energy dissipation device for typical steel frame building in Iran", Eng. Struct., 23(6), 643-655. https://doi.org/10.1016/S0141-0296(00)00082-1
  37. Tsai, K.C., Chen, H.W., Hong, C.P. and Su, Y.F. (1993), "Design of steel triangular plate energy absorbers for seismic-resistant construction", Earthq. Spectr., 9(3), 505-528. https://doi.org/10.1193/1.1585727
  38. Wen, Y.K. (1976), "Method for random vibration of hysteretic systems", J. Eng. Mech., 102(2), 249-263.
  39. Xu, Y.L., Qu, W.L. and Ko, J.M. (2000), "Seismic response control of frame structures using magnetorheological/electrorheological dampers", Earthq. Eng. Struct. Dyn., 29(5), 557-575. https://doi.org/10.1002/(SICI)1096-9845(200005)29:5<557::AID-EQE922>3.0.CO;2-X
  40. Zhang, R. and Soong, T.T. (1992), "Seismic design of viscoelastic dampers for structural applications", J. Struct. Eng., 118(5), 1375-1392. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1375)

피인용 문헌

  1. Test and evaluation of modified TADAS devices with different grades of steel vol.19, pp.2, 2017, https://doi.org/10.1007/s11803-020-0573-y