DOI QR코드

DOI QR Code

Radiolabeling of nanoparticle for enhanced molecular imaging

  • Kim, Ho Young (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Yun-Sang (Department of Nuclear Medicine, Seoul National University Hospital) ;
  • Jeong, Jae Min (Department of Nuclear Medicine, Seoul National University College of Medicine)
  • 투고 : 2017.12.11
  • 심사 : 2017.12.26
  • 발행 : 2017.12.30

초록

The combination of nanoparticle with radioisotope could give the in vivo information with high sensitivity and specificity. However, radioisotope labeling of nanoparticle is very difficult and radioisotopes have different physicochemical properties, so the radioisotope selection of nanoparticle should be carefully considered. $^{18}F$ was first option to be considered for labeling of nanoparticle. For the labeling of $^{18}F$ with nanoparticle, Prosthetic group is widely used. Iodine, another radioactive halogen, is often used. Since radioiodine isotopes are various, they can be used for different imaging technique or therapy in the same labeling procedures. $^{99m}Tc$ can easily be obtained as pertechnatate ($^{99m}{TcO_4}^-$) by commercial generator. Ionic $^{68}Ga$ (III) in dilute HCl solution is also obtained by generator system, but $^{68}Ga$ can be substituted for $^{67}Ga$ because of the short half-life (67.8 min). $^{64}Cu$ emits not only positron but also ${\beta}-particle$. Therefore $^{64}Cu$ can be used for imaging and therapy at the same time. These radioactive metals can be labeled with nanoparticle using the bifunctional chelator. $^{89}Zr$ has longer half-life (78.4 h) and is used for the longer imaging time. Unlike different metals, $^{89}Zr$ should use the other chelate such as DFO, 3,4,3-(LI-1,2-HOPO) or DFOB.

키워드

참고문헌

  1. Phelps ME. PET: The merging of biology and imaging into molecular imaging. J Nucl Med 2000;41:661-681.
  2. Madsen MT. Recent advances in SPECT Imaging. J Nucl Med 2007;48:661-673. https://doi.org/10.2967/jnumed.106.032680
  3. Ametamey SM, Honer M, Schubiger PA. Molecular imaging with PET. Chem Rev 2008;108:1501-1516. https://doi.org/10.1021/cr0782426
  4. Rudin M, Weissleder R. Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2003;2:123-131. https://doi.org/10.1038/nrd1007
  5. Schubiger PA, Lehmann L, Friebe M. (Eds.) PET chemistry: The driving force in molecular imaging. Springer-Verlag, Berlin-Heidelberg; 2007. p.6
  6. Saha GB. Fundamentals of nuclear pharmacy. 5th Ed. New York: Springer-Verlag; 2003. p. 60-61.
  7. Guillaume M, Luxen A, Nebeling B, Argentini M, Clark JC, Pike VW. Recommendations for fluorine-18 production. Appl Radiat Isot 1991;42:749-762. https://doi.org/10.1016/0883-2889(91)90179-5
  8. Visser GWM. Bakker, CNM. Herscheid, JDM. Brinkman, G. Hoekstra, A. The chemical properties of [$^{18}F$]- acetylhypofluorite in acetic acid solution. J Label compd Radiopharm 1984;21:1226.
  9. Oberdorfer F, Hofmann E, Marier-Brost W. Preparation of 18F-labelled N-fluoropyridinium triflate. J Label compd Radiopharm 1988;25:999-1005. https://doi.org/10.1002/jlcr.2580250912
  10. Satyamurthy N, Bida GT, Phelps ME, Barrio JR. N-[18F] Fluoro-N-alkylsulfonamides: novel reagents for mild and regioselective radiofluorination. Int J Rad Appl Instrum A. 1990;41:733-7388. https://doi.org/10.1016/0883-2889(90)90020-H
  11. Teare H, Robins EG, Kirjavainen A, Forsback S, Sandford G, Solin O, et al. Radiosynthesis and evaluation of [18F]selectfluor bis(triflate). Angew Chem Int Ed Engl 2010;49:6821-6824. https://doi.org/10.1002/anie.201002310
  12. Koslowsky I, Mercer J, Wuest F. Synthesis and application of 4-[(18) F]fluorobenzylamine: A versatile building block for the preparation of PET radiotracers. Org Biomol Chem 2010;8:4730-4735. https://doi.org/10.1039/c0ob00255k
  13. Haskali MB, Roselt PD, Karas JA, Noonan W, Wichmann CW, Katsifis A, Hicks, RJ, Hutton, CA. One-step radiosynthesis of 4-nitrophenyl 2-[(18)F]fluoropropionate ([(18)F]NFP); improved preparation of radiolabeled peptides for PET imaging. J Labelled Comp Radiopharm 2013;56:726-730. https://doi.org/10.1002/jlcr.3111
  14. Tang G, Zeng W, Yu M, Kabalka G. Facile synthesis of N-succinimidyl 4-[18F]fluorobenzoate ([$^{18}F$]SFB) for protein labeling. J Label compd Radiopharm 2008;51:68-71. https://doi.org/10.1002/jlcr.1481
  15. Berndt M, Pietzsch J, Wuest F. Labeling of low-density lipoproteins using the 18F-labeled thiol-reactive reagent N-[6-(4-[18F]fluorobenzylidene)aminooxyhexyl] maleimide. Nucl Med Biol 2007;34:5-15. https://doi.org/10.1016/j.nucmedbio.2006.09.009
  16. Cai W, Zhang X, Wu Y, Chen X. A Thiol-Reactive 18F-Labeling agent, N-[2-(4-18F-fluorobenzamido)Ethyl] maleimide, and synthesis of RGD peptide-based tracer for PET Imaging of alpha v beta 3 integrin expression. J Nucl Med 2006;47:1172-1180.
  17. Jacobson O, Kiesewetter DO, Chen X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug Chem 2015;26:1-18. https://doi.org/10.1021/bc500475e
  18. Rojas S, Gispert JD, Menchón C, Baldoví HG, Buaki- Sogo M, Rocha M, Abad S, Victor VM, Garcia H, Herance JR. Novel methodology for labelling mesoporous silica nanoparticles using the 18F isotope and their in vivo biodistribution by positron emission tomography. J of Nanopart Res 2015;17:131. https://doi.org/10.1007/s11051-015-2938-0
  19. Kondo K, Lambrecht RM, Wolf AP. Iodine-123 production for radiopharmaceuticals-XX excitation functions of the 124Te(p, 2n)123I and 124Te(p, n)124I reactions and the effect of target enrichment on radionuclidic purity.. Int J Appl Radiat Isot 1977;28:395-401. https://doi.org/10.1016/0020-708X(77)90132-6
  20. Lambrecht RM, Sajjad M, Qureshi MA, Al-Tanbawi SJ. Production of iodine-124. J Radioanal Nucl Chem Letters 1988;127:143-150. https://doi.org/10.1007/BF02164603
  21. Braghirolli AM, Waissmann W, da Silva JB, dos Santos GR. Production of iodine-124 and its applications in nuclear medicine. Appl Radiat Isot 2014;90:138-148. https://doi.org/10.1016/j.apradiso.2014.03.026
  22. Oliver SCN, Leu MY, DeMarco JJ, Chow PE, Lee SP, McCannel TA. Attenuation of iodine 125 radiation with vitreous substitutes in the treatment of uveal melanoma. Arch Ophthalmol 2010;128:888-893. https://doi.org/10.1001/archophthalmol.2010.117
  23. Min JJ, Chung JK, Lee YJ, Jeong JM, Lee DS, Jang JJ, Lee MC, Cho BY. Relationship between expression of the sodium/iodide symporter and 131I uptake in recurrent lesions of differentiated thyroid carcinoma. Eur J Nucl Med 2001;28:639-645. https://doi.org/10.1007/s002590100509
  24. McConahey PJ, Dixon FJ. A method of trace iodination of proteins for immunologic studies. Int Arch Allergy Appl Immunol 1966;29:185-189. https://doi.org/10.1159/000229699
  25. Fraker PJ, Speck JC. Protein and cell membrane iodinations with a sparingly soluble chloramide, 1,3,4,6-tetrachloro-3a,6adiphenylglycoluril 1978. Biochem Biophys Res Commun 2012;425:510-518. https://doi.org/10.1016/j.bbrc.2012.08.017
  26. Bolton AE, Hunter WM. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J 1973;133:529-539. https://doi.org/10.1042/bj1330529
  27. Saha GB. Fundamentals of Nuclear Pharmacy. 5th Ed. New York. Springer-Verlag; 2003. p. 127-128.
  28. Shao X, Agarwal A, Rajian JR, Kotov NA, Wang X. Synthesis and bioevaluation of $^{125}$I-labeled gold nanorods. Nanotechnology 2011;22:135102. https://doi.org/10.1088/0957-4484/22/13/135102
  29. Morales-Avila E, Ferro-Flores G, Ocampo-Garcia BE, De Leon-Rodriguez LM, Santos-Cuevas CL, Garcia- Becerra R, Medina LA, Gomez-Olivan L. Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c[RGDfK(C)] for molecular imaging of tumor ${\alpha}(v){\beta}(3)$ expression. Bioconjug Chem 2011;22(5):913-922. https://doi.org/10.1021/bc100551s
  30. Torres Martin de Rosales R, Tavare R, Glaria A, Varma G, Protti A, Blower PJ. ($^{99}m$)Tc-bisphosphonate-iron oxide nanoparticle conjugates for dual-modality biomedical imaging. Bioconjug Chem 2011;22:455-465. https://doi.org/10.1021/bc100483k
  31. van der Walt TN, Vermeulen C. Thick targets for the production of some radionuclides and the chemical processing of these targets at iThemba LABS. Nuclear Instruments and Methods in Physics Research Section A 2004;521:171-175. https://doi.org/10.1016/j.nima.2003.11.410
  32. Loc'H C, Maziere B, Comar D, Knipper R. A new preparation of germanium 68. Int J Appl Radiat Isot 1982;33:267-270.
  33. Gleason GI. A positron cow. Int J Appl Radiat Isot 1960;8:90-94. https://doi.org/10.1016/0020-708X(60)90052-1
  34. Yano Y, Anger HO. A GALLIUM-68 POSITRON COW FOR MEDICAL USE. J Nucl Med 1964;5:484-487.
  35. Schuhmacher J, Marier-Brost W. A new $^{68}Ge$/$^{68}Ga$ radioisotope generator system for production of $^{68}Ga$ in dilute HCl. Int J Appl Radiat Isot 1981;32:31-36. https://doi.org/10.1016/0020-708X(81)90174-5
  36. Little FE, Lagunas-Solarm MC. Cyclotron production of $^{67}Ga$. Cross sections and thick-target yields for the $^{67}Zn$(P,n) and $^{68}Zn$(p,2n) reactions. Int J Appl Radiat Isot 1983;34:631-637. https://doi.org/10.1016/0020-708X(83)90067-4
  37. Steyn J, Meyer BR. Production of $^{67}Ga$ by deuteron bombardment of natural zinc. Int J Appl Radiat Isot 1973;24:369-372. https://doi.org/10.1016/0020-708X(73)90015-X
  38. Shetty D, Lee YS, Jeong JM. (68)Ga-labeled radiopharmaceuticals for positron emission tomography. Nucl Med Mol Imaging 2010;44:233-240. https://doi.org/10.1007/s13139-010-0056-6
  39. Shetty D, Choi SY, Jeong JM, Hoigebazar L, Lee Y-S, Lee DS, Chung JK, Lee MC, Chung YK. Formation and characterization of gallium(III) complexes with monoamide derivatives of 1,4,7-triazacyclononane-1,4,7-triacetic acid: A study of the dependency of structure on reaction pH. Eur J Inorg Chem 2010;34:5432-5438.
  40. Lee YK, Jeong JM, Hoigebazar L, Yang BY, Lee YS, Lee BC, Youn H, Lee DS, Chung JK, Lee MC. Nanoparticles modified by encapsulation of ligands with a long alkyl chain to affect multispecific and multimodal imaging. J Nucl Med 2012;53:1462-1470. https://doi.org/10.2967/jnumed.111.092759
  41. Szelecsenyi F, Blessing G, Qaim SM. Excitation functions of proton induced nuclear reactions on enriched $^{61}Ni$ and $^{64}Ni$: Possibility of production of no-carrier-added $^{61}Cu$ and $^{64}Cu$ at a small cyclotron. Appl Radiat Isot 1993;44:575-580. https://doi.org/10.1016/0969-8043(93)90172-7
  42. Xie H, Wang ZJ, Bao A, Goins B, Phillips WT. In vivo PET imaging and biodistribution of radiolabeled gold nanoshells in rats with tumor xenografts. Int J Pharm 2010;395:324-330. https://doi.org/10.1016/j.ijpharm.2010.06.005
  43. Chen K, Li Z-B, Wang H, Cai W, Chen X. Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur J Nucl Med Mol Imaging 2008;35:2235-2244. https://doi.org/10.1007/s00259-008-0860-8
  44. Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, Chen X, Dai H.. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2007;2:47-52. https://doi.org/10.1038/nnano.2006.170
  45. Wong RM, Gilbert DA, Liu K, Louie AY. Rapid sizecontrolled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles. ACS Nano 2012;6:3461-3467. https://doi.org/10.1021/nn300494k
  46. Deri MA, Ponnala S, Zeglis BM, Pohl G, Dannenberg JJ, Lewis JS, Francesconi LC. Alternative chelator for $^{89}Zr$ radiopharmaceuticals: radiolabeling and evaluation of 3,4,3-(LI-1,2-HOPO). J Med Chem 2014;57:4849-4860. https://doi.org/10.1021/jm500389b
  47. Richardson-Sanchez T, Tieu W, Gotsbacher MP, Telfer TJ, Codd R. Exploiting the biosynthetic machinery of streptomyces pilosus to engineer a water-soluble zirconium(iv) chelator. Org Biomol Chem 2017;15:5719-5730. https://doi.org/10.1039/C7OB01079F