DOI QR코드

DOI QR Code

Study On Lagrangian Heat Source Tracking Method for Urban Thermal Environment Simulations

도시 열환경 시뮬레이션을 위한 라그랑지안 열원 역추적 기법의 연구

  • Received : 2017.10.25
  • Accepted : 2017.11.10
  • Published : 2017.12.31

Abstract

A method is proposed for locating the heat sources from temperature observations, and its applicability is investigated for urban thermal environment simulations. A Lagrangian particle dispersion model, which is originally built for simulating the pollutants spread in the air, is exploited to identify the heat sources by transporting the Lagrangian heat particles backwards in time. The urban wind fields are estimated using a diagnostic meteorological model incorporating the morphological model for the urban canopy. The proposed method is tested for the horizontally homogeneous urban boundary layer problems. The effects of the turbulence levels and the computational time on the simulation are investigated.

Keywords

References

  1. Bentham, T., Britter, R. (2003) Spatially averaged flow within obstacle arrays, Atmospheric Environment, 37(15), 2037-2043. https://doi.org/10.1016/S1352-2310(03)00123-7
  2. Cimorelli, A.J., Perry, S.G., Venkatram, A., Weil, J.C., Paine, R.J., Wilson, R.B., Brode, R.W. (2005) AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization, Journal of Applied Meteorology, 44(5), 682-693. https://doi.org/10.1175/JAM2227.1
  3. De Bruin, H.A.R., Holtslag, A.A.M. (1982) A simple parameterization of the surface fluxes of sensible and latent heat during daytime compared with the Penman-Monteith concept, Journal of Applied Meteorology, 21(11), 1610-1621. https://doi.org/10.1175/1520-0450(1982)021<1610:ASPOTS>2.0.CO;2
  4. Draxler, R.R., Hess, G.D. (1998) An overview of the HYSPLIT_4 modelling system for trajectories, Australian Meteorological Magazine, 47(4), 295-308.
  5. Hanna, S.R., Britter, R.E. (2002) Wind flow and vapor cloud dispersion at industrial sites. American Institute of Chemical Engineers, New York, 47-117.
  6. Huttner, S., Bruse, M., Dostal, P., Katzschner, A. (2009) June. Strategies for mitigating thermal heat stress in Central European cities: The project KLIMES. In The Seventh International Conference on Urban Climate (Vol. 29)
  7. Kim, B., Lee, C., Joo, S., Ryu, K., Kim, S., You, D., Shim, W. (2011) Estimation of roughness parameters within sparse urban-like obstacle arrays, Boundary-Layer Meteorology, 139, 457-485. https://doi.org/10.1007/s10546-011-9590-8
  8. Kim, S., Yun, J. (2017) Study on Urban temperature prediction method using Lagrangian particle dispersion model, Journal of Korean Society for Atmospheric Environment, 33(1), 45-53. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2017.33.1.045
  9. Kim, S. (2003) Evaluation of one-particle stochastic Lagrangian models in horizontally homogeneous neutrallystratified atmospheric surface layer, Journal of Korean Society for Atmospheric Environment, 19(4), 397-414. (in Korean with English abstract)
  10. Kusaka, H., Hara, M., Takane, Y. (2012) Urban climate projection by the WRF model at 3-km horizontal grid increment: dynamical downscaling and predicting heat stress in the 2070's August for Tokyo, Osaka, and Nagoya metropolises, Journal of the Meteorological Society of Japan. Ser. II, 90, 47-63.
  11. Lettau, H. (1969) Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description, Journal of Applied Meteorology, 8(5), 828-832. https://doi.org/10.1175/1520-0450(1969)008<0828:NOARPE>2.0.CO;2
  12. Lin, C.Y., Su, C.J., Kusaka, H., Akimoto, Y., Sheng, Y.F., Huang, Jr. C., Hsu, H.H. (2016) Impact of an improved WRF urban canopy model on diurnal air temperature simulation over northern Taiwan, Atmospheric Chemistry and Physics, 16(3), 1809-1822. https://doi.org/10.5194/acp-16-1809-2016
  13. Macdonald, R.W. (2000) Modelling the mean velocity profile in the urban canopy layer, Boundary-Layer Meteorology, 97(1), 25-45. https://doi.org/10.1023/A:1002785830512
  14. Panofsky, H.A., Dutton, J.A. (1984) Atmospheric turbulence: models and methods for engineering applications. Wiley.
  15. Scire, J.S., Robe, F.R., Fernau, M.E., Yamartino, R.J. (2000) A user's guide for the CALMET meteorological model (version5), 332pp.
  16. Stohl, A. (1999) The FLEXTRA Trajectory Model Version 3.0, User's Guide, 41pp.
  17. Stull, R.B. (1983) A heat-flux history length scale for the nocturnal boundary layer, Tellus A: Dynamic Meteorology and Oceanography, 35(3), 219-230. https://doi.org/10.3402/tellusa.v35i3.11435
  18. Sutherland, J., Peet, A.H., Soulsby, R.L. (2004) Evaluating the performance of morphological models, Coastal Engineering, 51(8), 917-939. https://doi.org/10.1016/j.coastaleng.2004.07.015
  19. Van Ulden, A.P., Holtslag, A.A.M. (1985) Estimation of atmospheric boundary layer parameters for diffusion applications, Journal of Climate and Applied Meteorology, 24(11), 1196-1207. https://doi.org/10.1175/1520-0450(1985)024<1196:EOABLP>2.0.CO;2
  20. Yi, C.Y., Eum, J.H., Choi, Y.J., Kim, K.R., Scherer, D., Fehrenbach, U., Kim, G.H. (2011) Development of Climate Analysis Seoul (CAS) maps based on landuse and meteorological model, Journal of the Korean Association of Geographic Information Studies, 14(1), 12-25. (in Korean with English abstract) https://doi.org/10.11108/kagis.2011.14.1.012