참고문헌
- Abd-alla, A.N., Alshaikah, F., Giorgio, I. and Della Corte, A. (2015), "A mathematical model for longitudinal wave propagation in a magnetoelastic hollow cylinder of anisotropic material under influence of initial hydrostatics stress", Math. Mech. Solid., 21(1), 104-118. https://doi.org/10.1177/1081286515582883
- Akinola, A. (1999), "On interating longitudinal-shear waves in large elastic deformation of a composite cylindrical laminate", Int. J. Nonlin. Mech., 34, 405-414. https://doi.org/10.1016/S0020-7462(98)00019-5
- Akinola, A. (2001), "An application of nonlinear fundamental problems of a transversely isotropic layer in finite deformation", Int. J. Nonlin. Mech., 91(3), 307-321.
- Akinola, A.P., Layeni, O.P. and Olagunju, M.A. (2004), "A solution by anisotropic expansion for a composite parallelepiped deformed into cylinder", Appl. Math. Comput., 149, 599-611.
- Amenzade, Y.A. (1979), Theory of Elasticity, MIR Publishers, Moscow.
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4) 423-431.
- Berferhat, R., Daouadji, T.H., Mansour, M.S. and Hadji, L. (2016), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., 10(6), 1429-1449. https://doi.org/10.12989/eas.2016.10.6.1429
- Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287
- Calim, F.F. (2016), "Dynamic response of curved Timoshenko beams resting on viscoelastic foundation", Struct. Eng. Mech., 59(4), 761-774. https://doi.org/10.12989/sem.2016.59.4.761
- Chen, W., Ye, L. and Sun, H. (2010), "Fractional diffusion equation by the Kansa method", Comput. Math. Appl., 59, 1614-1620. https://doi.org/10.1016/j.camwa.2009.08.004
- Du, R., Cao, W.R. and Sun, Z.Z. (2010), "A compact difference scheme for the fractional diffusion-wave equation", Appl. Math. Model., 34, 2998-3007. https://doi.org/10.1016/j.apm.2010.01.008
- Fadodun, O.O. (2014), "Two-dimensional theory for a transversely isotropic thin plate in nonlinear elasticity", Ph.D. dissertation, Obafemi Awolowo University, Ile-Ife, Nigeria.
- Fadodun, O.O. and Akinola, A.P. (2017), "Bending of an isotropic non-classical thin rectangular plate", Struct. Eng. Mech., 61(4), 437-440. https://doi.org/10.12989/sem.2017.61.4.437
- Fu, Z.J., Chen, W. and Yang, H.T. (2013), "Boundary particle method for Laplace transformed time fractional diffusion equations", J. Comput. Phys., 235, 52-66. https://doi.org/10.1016/j.jcp.2012.10.018
- Hadji, L., Khelifa, Z. and Adda Bedia, E.A. (2016), "A new higher-order shear deformation model for functionally graded beams", KSCE J. Civil Eng., 20(5), 1835-1841. https://doi.org/10.1007/s12205-015-0252-0
- Hadji, L., Zouatnia, N. and Kassoul, A. (2017), "Wave propagation in functionally graded beams using various higher-order shear deformation beams theories", Struct. Eng. Mech., 62(2), 143-149. https://doi.org/10.12989/sem.2017.62.2.143
- Holm, B. and Sinkus, R. (2003), "Fractional laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power law dependency", J. Acoust. Soc. Am., 115(4), 1424-1430. https://doi.org/10.1121/1.1646399
- Honarvar, F., Enjilela, E. and Sinclair, A.N. (2007), "Wave propagation in transversely isotropic cylinders", Int. J. Solid. Struct., 44, 5236-5246. https://doi.org/10.1016/j.ijsolstr.2006.12.029
- Khalil, R., Al Horani, M., Yousef, A. and Sababheh, M. (2014), "A new definition of fractional derivative", J. Comput. Appl. Mech., 264(1), 65-70. https://doi.org/10.1016/j.cam.2014.01.002
- Korabathina, R. and Koppanati, M.S. (2016), "Linear free vibration analysis of tapered Timoshenko beams using coupled displacement field method", J. Vibroeng. (JVE International Ltd.), 2(1), 27-34.
- Li, X.C. (2014), "Analytical solution to a fractional generalized two phase Lame-ClapeyronStefan problem", Int. J. Numer. Meth. Heat. Fluid Flow, 24(6), 1251-1259. https://doi.org/10.1108/HFF-03-2013-0102
- Minardi, F. (1995), "The time fractional diffusion-wave equation", Radiophys. Quant. Elect., 38(1), 13-24. https://doi.org/10.1007/BF01051854
- Ponnusamy, P. and Rajagopal, M. (2010), "Wave propagation in a transversely isotropic solid cylinder of arbitrary cross-sections immersed in fluid", Eur. J. Mech. A Solid., 29, 158-165. https://doi.org/10.1016/j.euromechsol.2009.09.002
- Rao, S.S. (2007), Vibration of Continuous Systems, John Wiley and Son, Inc., Hobokean, New Jersey, U.S.A.
- Torres, F.J. (2013), "Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation", Bull. Iran. Math. Soc., 37(2), 307-325.
- Treeby, B.E. and Cox, B.T. (2010), "Modeling power law absorption and dispersion for acoustic propagtion using the fractional Laplacian", J. Acoust. Soc. Am., 195(5), 2741-2748.
- Yuste, S.B. (2006), "Weighted average finite difference method for fractional diffusion equation", J. Comput. Phys., 216(1), 264-274. https://doi.org/10.1016/j.jcp.2005.12.006
피인용 문헌
- Wave dispersion properties in imperfect sigmoid plates using various HSDTs vol.33, pp.5, 2017, https://doi.org/10.12989/scs.2019.33.5.699