DOI QR코드

DOI QR Code

Physiological Characteristics and Anti-Obesity Effect of Lactobacillus plantarum K6 isolated from Kimchi

김치에서 분리한 Lactobacillus plantarum K6의 생리적 특성 및 비만억제효과

  • Received : 2017.12.01
  • Accepted : 2017.12.14
  • Published : 2017.12.31

Abstract

This study aimed to investigate the physiological characteristics and anti-obesity effects of a newly isolated bacterium, Lactobacillus plantarum K6. L. plantarum K6 showed good ${\alpha}-amylase$ inhibitory activity ($96.78{\pm}3.29%$), ${\alpha}-glucosidase$ inhibitory activity ($92.55{\pm}9.62%$), and lipase inhibitory activity ($85.17{\pm}0.79%$), and the strain inhibited the adipocyte differentiation of 3T3-L1 cells ($27.4{\pm}1.4%$) when present at a concentration of $100{\mu}g/mL$. L. plantarum K6 was isolated from kimchi and its physiological characteristics were investigated. A comparison of the sensitivity of the isolate to 15 different antibiotics showed that L. plantarum K6 is highly sensitive to erythromycin and highly resistant to vancomycin, ampicillin, and polymyxin B. This strain also showed high arylamidase and ${\beta}-galactosidase$ activities. Moreover, it was relatively tolerant to bile acid and low pH, and displayed resistance to Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus, with rates of 51.8%, 42.4%, 61.6%, and 54.9%, respectively. No bio genic amines were produced. L. plantarum K6 also showed high adhesion activity to HT-29 cells compared to L. rhamnosus GG. These results demonstrate that Lactobacillus plantarum K6 has potential as a probiotic with anti-obesity effects.

본 연구는 김치로부터 비만 억제능력이 있는 젖산균을 분리 및 동정하고, 이 균주의 생리적 특성을 규명하여 상업적으로의 이용가능성을 검토하고자 실시하였다. 이를 위해 Modified MRS 분별배지를 사용하여 노란색 집락을 형성하는 균주를 대상으로 각각 ${\alpha}-amylase$ inhibitory activity, ${\alpha}-glucosidase$ inhibitory activity와 lipase inhibitory activity가 우수한 균주를 선발한 결과 K6 균주가 최종 선발되었다. K6 균주는 ${\alpha}-amylase$ 억제활성 $96.78{\pm}3.29%$, ${\alpha}-glucosidase$ 억제활성 $92.55{\pm}9.62%$, lipase 억제활성 $85.17{\pm}0.79%$, 지방분화 억제활성 $27.4{\pm}1.4%$로 나타났으며, 동정결과 Lactobacillus plantarum으로 판명되었고, Lactobacillus plantarum K6으로 명명하였다. L. plantarum K6은 답즙산과 산성의 pH에서 모두 우수한 생존력을 나타내었고, 효소활성은 전반적으로 낮았으나 arylamidase와 ${\beta}-galactosidase$에 대해 비교적 높은 효소 활성을 나타내었다. 항생제 내성 실험 결과 vancomycin, ampicillin, polymyxin B에 내성이 있는 반면 erythromycin에 감수성을 나타냈으며, Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes와 Staphyloccous aureus에 대해 각각 51.8%, 42.4%, 61.6%와 54.9%의 억제 효과를 지니고 있는 것으로 나타났다. 또한, 아민을 생성하지 않으며, 장부착성은 대조구인 L. rhamnosus GG보다 우수하였다.

Keywords

References

  1. Baken, K. A., Ezendam, J., Gremmer, E. R., De Klerk, A., Pennings, J. L., Matthee, B., Peijnenburg, A. A. and Van Loveren, H. 2006. Evaluation of immunomodulation by Lactobacillus casei Shirota: Immune function, autoimmunity and gene expression. Int. J. Food. Microbiol. 112:8-18. https://doi.org/10.1016/j.ijfoodmicro.2006.06.009
  2. Bhathena, J., Martoni, C., Kunlamarva, A., Urbanska, A. M., Malhotra, M. and Prakash, S. 2009. Orallly delivered mocroencapsulated live probiotic formulation lowers serum lipids in hypercholesterolemic hamsters. J. Med. Food. 12:310-319. https://doi.org/10.1089/jmf.2008.0166
  3. Booth, I. R. 1985. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49:359-378.
  4. Borriello, S. P., Hammes, W. P., Holzapfel, W., Marteau, P., Schrezenmeir, J., Vaara, M. and Valtonen, V. 2003. Safety of probiotics that contain Lactobacillus or Bifidobacteria. Clin. Infect. Dis. 36:775-780. https://doi.org/10.1086/368080
  5. Bover-Cid, S. and Holzaofel, W. H. 1999. Improved screening procedure for biogenic amine production by lactic acid bacteria. Int. J. Food Microbiol. 53(1):33-41. https://doi.org/10.1016/S0168-1605(99)00152-X
  6. Carek, P. J. and Dickerson, L. M. 1999. Current concepts in the pharmacological management of obesity. Drugs 57:883-904. https://doi.org/10.2165/00003495-199957060-00005
  7. Charteris, W. P., Kelly, P. M., Morelli, L. and Collins, J. K. 2001. Gradient diffusion antibiotic susceptibility testing of potentially probiotic lactobacilli. J. Food Prot. 64: 2007-2014. https://doi.org/10.4315/0362-028X-64.12.2007
  8. Chen, P. N., Chu, S. C., Chiou, H. L., Kuo, W. H., Chiang, C. L. and Hsieh, Y. S. 2006. Mulberry anthocyanins, cyaniding 3-rutinoside and cyaniding-3-glucoside, exhibited and inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Lett. 28:248-259.
  9. Chiasson, J. L. 2006. Acarbose for the prevention of diabetes, hypertension, and cardiovascular disease in subjects with impaired glucose tolerance: The study to prevent non-insulin-dependent diabetes mellitus(STOPNIDDM) trial. Trial. End. Pract. 1:25-30.
  10. Clark, P. A., Cotton, L. N. and Martin, J. H. 1993. Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: II-Tolerance to simulated pH of human stomachs. Cul. Dairy Prod. J. 28:11-14.
  11. Daeschel, M. A. 1989. Antimicrobial substances from lactic acid bacteria for use as preservatives. J. Food Technol. 43:164-167.
  12. Erkkila, S. and Petaja, E. 2000. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 55: 279-300. https://doi.org/10.1016/S0309-1740(99)00152-7
  13. Gilliand, S. E. and Speck, M. L. 1977. Deconjugation of bile acids by intestinal lactobacilli. Appl. Environ. Micobiol. 33:15-18.
  14. Gilliland, S. E., Staley, T. E. and Bush, L. J. 1984. Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J. Dairy Sci. 67:3045-3051. https://doi.org/10.3168/jds.S0022-0302(84)81670-7
  15. Gilliland, S. E. and Walker, D. K. 1990. Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci. 73:905-911. https://doi.org/10.3168/jds.S0022-0302(90)78747-4
  16. Gopal, P. K., Prasad, J., Smart, J., and Gill, H. S. 2001. In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Esherichia coli. Int. J. Food Microbiol. 47:207-216.
  17. Hammes, W. P., Weiss, N. and Holzapfel, W. 1992. The genera Lactobacilli and Carnobacterium. pages 1563-1578 in The Prokaryotes. 2nd ed, Springer-Verlag, New York. USA.
  18. Havinaar, R., Brink, B. T. and Veid, J. H. J. I. 1992. Selection of strains for probiotic use. In: Fuller R. (ed), Probiotics, Chapman & Hall, London. pp. 209-224.
  19. Hemati, N., Ross, S. E., Erickson, R. L., Groblewski, G. E. and MacDuygald, O. A. 1997. Signaling pathways through which insulin regulates CCAAT/enhancer binding $protein{\alpha}$ ($C/EBP{\alpha}$) phosphorylation and gene expression in 3T3-L1 adipocytes: Correlation with CLUT4 gene expression. J. Biol. Chem. 272:25913-25919. https://doi.org/10.1074/jbc.272.41.25913
  20. Izquierdo-Pulido, M., Marine-Font, A. and Vidal Carou, M. C. 1994. Biogenic amine formation during malting and brewing. J. Food Sci. 59:1104-1107. https://doi.org/10.1111/j.1365-2621.1994.tb08201.x
  21. Jacobsen, C. N., Nielsen, V. R., Hayford, A. E., Moller, P. L., Michaelsen, K. F., Paerregaard, A., Sandstrom, B., Tvede, M. and Jakobsen, M. 1999. Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl. Environ. Microbiol. 65:4949-4956.
  22. Kang, J. H., Yun, S. I., Park, M. H., Park, J. H., Jeong, S. Y. and Park, H. O. 2013. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoSOne. 8.1:e54617. https://doi.org/10.1371/journal.pone.0054617
  23. Kim, D. H., Choi, M. R., Hong, J. E., Lee, J. Y., Lee, S. I., Jung, S. H. and Kim, E. J. 2014. Effect of mixture of Lactobacillus plantarum CECT 7527, 7528 and 7529 on obesity and lipid metabolism in rats fed a high-fat diet. J. Korean Soc. Food Sci. Nutr. 43:1484-1490. https://doi.org/10.3746/jkfn.2014.43.10.1484
  24. Kim, J. Y., Jeong, J. E., Moon, S. H. and Park, K. Y. 2010. Antiobesity effect of Bacillus subtilis KC-3 fermented soymilk in 3T3-L1 adipocytes. J. Korean Soc. Food Sci. Nutr. 39:1126-1131. https://doi.org/10.3746/jkfn.2010.39.8.1126
  25. Kim, S. G., An, G. H., Yoon, S. W., Lee, Y. C. and Ha, S. D. 2003. A study on dietary supplement to reduce obesity by the mechanism of decreasing lipid and carbohydrate absorption. Korean J. Food Sci. Technol. 35:519-526.
  26. Kim, S. J., Cho, S. Y., Kim, S. H., Song, O. J., Shin, I. S., Cha, D. S., and Park, H. J. (2008) Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC 43121. LWT-Food Sci. Technol. 41:493-500. https://doi.org/10.1016/j.lwt.2007.03.025
  27. Kumar, M., Ghosh, M. and Ganguli, A. 2012. Mitogenic response and probiotic characteristics of lactic acid bacteria isolated from indigenously pickled vegetables and fermented beverages. World. J. Microbiol. Biotechnol. 28:703-711. https://doi.org/10.1007/s11274-011-0866-4
  28. Kwon, J. Y., Cheigh, H. S. and Song, Y. O. 2004. Weight reduction and lipid lowering effects of kimchi lactic acid powder in rats fed high fat diets. Korean J. Food Sci. 36:1014-1019.
  29. Larsen, A. G., Vogensen, F. K. and Josephsen, J. 1993. Antimicrobial activity of lactic acid bacteria isolated from sour doughs: purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. J. Appl. Bacteriol. 75:113-122. https://doi.org/10.1111/j.1365-2672.1993.tb02755.x
  30. Lee, K., Paek, K., Lee, H. Y., Park, J. H. and Lee, Y. 2007. Antiobesity effect of trans-10, cis-12 conjugated linoleic acid-producing Lactobacillus plantarum PL62 on dietinduced obese mice. J. Appl. Microbiol. 103:1140-1146. https://doi.org/10.1111/j.1365-2672.2007.03336.x
  31. Lim, S. D., Kim, K. S. and Do, J. R. 2011. Physiological characteristics and production of vitamin K2 by Lactobacillus fermentum LC272 isolated from raw milk. Korean J. Food Sci. Ani. Resour. 31:513-520. https://doi.org/10.5851/kosfa.2011.31.4.513
  32. Lin, W. H., Hwang, C. F., Chen, L. W., and Tsen, H. Y. (2006) Viable counts, characteristic evaluation for commercial lactic acid bacteria products. Food. Microbiol. 23:74-81. https://doi.org/10.1016/j.fm.2005.01.013
  33. Lonkar, P., Harne, S. D., Kalorey, D. and Kurkure, N. V. 2005. Isolation, in vitro antibacterial activity, bacterial sensitivity and plasmid profile of Lactobacilli. Asian Austral. J. Anim. 18:1336-1342. https://doi.org/10.5713/ajas.2005.1336
  34. Lowe, M. E. 1994. Pancreatic triglyceride lipase and colipase: Insights into dietary fat digestion. Gastroenterology 107:1524-1536. https://doi.org/10.1016/0016-5085(94)90559-2
  35. Lye, H. S., Kuan, C. Y., Ewe, J. A., Fung, W. Y. and Liong, M. T. 2009. The improvement of hypertension by probiotics: effects on cholesterol, diabetes, renin, and phytoestrogens. Int. J. Mol. Sci. 10:3755-3775. https://doi.org/10.3390/ijms10093755
  36. Mathur, S. and Singh, R. 2005. Antibiotic resistance in food lactic acid bacteria-a review. Int. J. Food. Microbiol. 105:281-295. https://doi.org/10.1016/j.ijfoodmicro.2005.03.008
  37. Mcdonald, L. C., Fleming, H. P. and Hassan, H. M. 1990. Acid tolerance of Leuconostoc mesenteroides and Lactobacillus casei. Appl. Environ. Microbial. 53:2124-2128.
  38. Mokdad, A. H., Ford, E. S., Bowman, B. A., Dietz, W. H., Vinicor, F., Bales, V. S.. 2003. Prevalence of obesity, diabetes, and obesity-related health risk factors. J. Am. Med Assoc. 289:76-79.
  39. Moon, Y. J., Soh, J. R., Yu, J. J., Sohn, H. S., Cha, Y. S. and Oh, S. H. 2012. Intracellular lipid accumulation inhibitory effect of Weissella koreensis OK1-6 isolated from kimchi on differentiating adipocyte. J. Appl. Microbiol. 113:652-658. https://doi.org/10.1111/j.1365-2672.2012.05348.x
  40. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 62:55-63.
  41. O'Halloran, S., Feeney, M., Morrissey, D., Murphy, L., Thornton, G., Shanahan, F., O'Sullivan, G. C. and Collins, J. K. 1997. Adhesion of potential probiotic bacteria to human epithelial cell lines. Poster in conference: Functional foods: Designer foods for the future, Cork, Ireland.
  42. Pennacchia, C., Ercolini, D., Blaiotta, G., Pepe, O., Mauriello, G. and Villani, F. 2004. Selection of Lactobacillus strains from fermented sausages for their potential use as probiotics. Meat Sci. 67:309-317. https://doi.org/10.1016/j.meatsci.2003.11.003
  43. Rafter, J. 2004. The effects of probiotics on colon cancer development. Nutr. Res. Rev. 17:277-284. https://doi.org/10.1079/NRR200484
  44. Ramirez-Zacarias, J. L., Castro-Munozledo, F. and Kuri-Harcuch, W. 1992. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochem. 97:493-497. https://doi.org/10.1007/BF00316069
  45. Rial, R. D. (2000) The role of probiotic cultures in the control of gastrointestinal health. J. Nutr. 130:396-402. https://doi.org/10.1093/jn/130.2.396S
  46. Saarela, M., Mogensen, G., Fonden, R., Matto, J. and Mattila-Sandholm, T. 2000. Probiotic bacteria: safety, functional and technological properties. J. Biotechnol. 84:197-215. https://doi.org/10.1016/S0168-1656(00)00375-8
  47. Si, M. M., Lou, J. S., Zhou, C. X., Shen, J. N., Wu, H. H., Yang, B., He, Q. J. and Wu, H. S. 2010. Insulin releasing and alpha-glucosidase inhibitory activity of ethyl acetate fraction of Acorus calamus in vitro and in vivo. J. Ethnopharmacol. 128:154-159. https://doi.org/10.1016/j.jep.2009.12.044
  48. Song, M. Y., Bose, S. and Kim. H. J. 2013. Effect of probiotics-fermented Samjunghwan on differentiation in 3T3-L1 preadipocytes. J. Korean Soc. Food Sci. Nutr. 42:1-7. https://doi.org/10.3746/jkfn.2013.42.1.001
  49. Vandekerckove, P. 1977. Amines in dry fermented sausage: a research not. J. Food Sci. 42:283-285. https://doi.org/10.1111/j.1365-2621.1977.tb01275.x
  50. Vidal-Carou, M. C., Ambatle-Espunyes, A., Ulla-Ulla, M. C. and Marine-Font, A. 1990. Histamine and tyramine in Spanish wines: their formation during the winemaking process. Am. J. Enol. Vitic. 41:160-167.
  51. Xiao, Z., Storms, R. and Tsang, A. 2006. A quantitative starchiodine method for measuring alpha-amylase and glucoamylase activities. Anal. Biochem. 351:146-148. https://doi.org/10.1016/j.ab.2006.01.036

Cited by

  1. Lactobacillus plantarum B19 Isolated from Kimchi and Characteristics of Organic Acid Production in Fermented Soymilk vol.29, pp.3, 2017, https://doi.org/10.17495/easdl.2019.6.29.3.198
  2. Lactobacillus fermentum SMFM2017-NK4 Isolated from Kimchi Can Prevent Obesity by Inhibiting Fat Accumulation vol.10, pp.4, 2021, https://doi.org/10.3390/foods10040772