DOI QR코드

DOI QR Code

Chloride Penetration Resistance and UV Properties in Coating Materials Containing Various Slime-Forming Bacteria

슬라임 생성 박테리아를 혼입한 코팅재의 염해 저항성 및 초음파 특성

  • Kwon, Seung-Jun (Department of Civil Engineering, Hannam University) ;
  • Yoon, Hyun-Sub (Depart. Architectural Engineering, Graduate School, Kyonggi University) ;
  • Yang, Keun-Hyeok (Depart. Plant.Architectural Engineering, Kyonggi University)
  • 권성준 (한남대학교 건설시스템공학과) ;
  • 윤현섭 (경기대학교 일반대학원 건축공학과) ;
  • 양근혁 (경기대학교 플랜트.건축공학과)
  • Received : 2017.09.06
  • Accepted : 2017.12.14
  • Published : 2017.12.30

Abstract

Recently, many researches on crack healing and repairing technique using bacteria which can produce vital-reacted calcite have been proposed. This study is for a basic research on repair material with slime formation through bacteria and deals with durability evaluation for coating materials containing bacteria-forming slime. For the work, 4 types of bacteria (Rhodobacter capsulatus, Rhodopseudomonas palustris, Bacillus thuringiensis, and Bacillus subtilis) and 2 types of nutrient conditions are considered, and several tests covering strength evaluation under sulfate condition, accelerated chloride diffusion, and UV (Ultrasonic Velocity) measurement are performed. Strength improvement in coating materials containing bacteria is evaluated in spite of even exposure to sulfate attack to 7 days. Chloride diffusion coefficient and UV properties are also improved except for the case of Rhodopseudomonas palustris. With resistance of slime to long term exposure and aerobic conditions for bacteria longevity, the proposed bacteria shows an engineering feasibility for repair material of RC structure exposed harsh environment.

최근 들어 박테리아를 이용하여 콘크리트의 수복하거나 박테리아 대사를 이용한 보수재료에 대한 연구가 수행되고 있다. 본 연구는 박테리아 대사를 이용하여 슬라임을 형성하며 이를 이용한 보수재료의 개발에 대한 기초적 연구로서 박테리아 슬라임을 포함한 시멘트 코팅재의 내구성 평가를 다루고 있다. 기초연구를 위해 4가지 박테리아(Rhodobacter capsulatus, Rhodopseudomonas palustris, Bacillus thuringiensis, Bacillus subtilis)과 2가지 배양조건이 고려되었으며, 제조된 코팅재를 사용하여 황산 5% 수용액에 노출에 따른 강도 변화, 염화물 확산계수, 초음파속도 평가가 수행되었다. 박테리아가 혼입된 코팅재의 경우 강도가 개선되었으며, 황산 5% 수용액 침지 이후에도 7일까지는 강도가 개선되었다. 염화물 확산계수도 Rhodopseudomonas palustris를 제외한 경우 충분한 염해저항성능을 나타내었으며, 초음파 속도 역시 우수하게 평가되었다. 장기열화에 대한 슬라임의 저항과 박테리아의 수명을 연장할 수 있는 호기성 환경이 유지된다면 대상 박테리아는 열화환경에 노출된 콘크리트 구조의 보수재 적용에 사용될 수 있는 공학적 가능성을 보여준다.

Keywords

References

  1. Abe, T. (1999). "Result of reference review on crack width effect to carbonation of concrete," Proceedings of Symposium on Rehabilitation of Concrete Structures, Jan., 1(1), 7-14.
  2. Andrade, C. (1993). Calculation of chloride diffusion coefficients in concrete from ionic migration measurement, Cement and Concrete Research, 23(3), 724-742. https://doi.org/10.1016/0008-8846(93)90023-3
  3. ASTM C 597-83. (1990). Standard Test Method for PulseVelocity Through Concrete, American Society for Testing andMaterials, 1-24.
  4. Baek, C.W., Kim, H.S., Choi, S.W., Jo, H.T., Ryu, D.H. (2015).Durability assessment of high strength concrete with highvolume mineral admixture, Journal of the Korean ConcreteInstitute, 27(6), 641-649. https://doi.org/10.4334/JKCI.2015.27.6.641
  5. Choi, G.Y. (2005). Experiment for Environment FavorableConsolidation of Rivers and Channels, Ph.D Thesis, KonkukUniversity, Korea
  6. Choi, J.I., Song, K.I., Song, J.K., Lee, B.Y. (2016). Compositeproperties of high-strength polyethylene fiber-reinforcedcement and cementless composites, Composite Structures,138, 116-121 https://doi.org/10.1016/j.compstruct.2015.11.046
  7. Choi, Y.C., Cho, Y.K., Shin, K.J., Kwon, S.J. (2016). Development and application of microcapsule for cement hydration control, KSCE Journal of Civil Engineering, 20(1), 282-292. https://doi.org/10.1007/s12205-015-0281-8
  8. Hamid, K., Raheb, B. (2017). Application of carbonate precipitating bacteria for improving properties and repairing cracks of shotcrete, Construction and Building Materials, 148, 249-260. https://doi.org/10.1016/j.conbuildmat.2017.05.074
  9. JSTM C 7401. (1999). Method of test for chemical resistance of concrete in aggressive solution, Cement and Concrete Research Japanese Industrial Standard, 1-10 [in Japanese].
  10. Jung, J.E., Yang, K.H., Yoon, H.S. (2015). Adsorption technology for bacteria-based concrete coating, Journal of the Korean Recycled Construction Resources Institute, 3(2), 140-145. https://doi.org/10.14190/JRCR.2015.3.2.140
  11. Kang, S.T., Lee, B.Y., Kwon, S.J. (2015). Suggestion for concrete strength grade using ultrasonic velocity for tunnel lining concrete, Journal of the Korean Recycled Construction Resources Institute, 3(4), 320-327 [in Korean]. https://doi.org/10.14190/JRCR.2015.3.4.320
  12. KS F 2405. (2015). Standard Test Method for Compressive Strength of Concrete, KSSN, 1-3 [in Korean].
  13. Kwon, S.J., Na, U.J., Park, S.S., Jung, S.H. (2009). Service life prediction of concrete wharves with early-aged crack: Probabilistic approach for chloride diffusion, Structural Safety, 31(1), 75-83. https://doi.org/10.1016/j.strusafe.2008.03.004
  14. Kwon, S.J., Song, H.W. (2010). Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling, Cement and Concrete Research, 40(1), 119-127. https://doi.org/10.1016/j.cemconres.2009.08.022
  15. Park, S.S., Kwon, S.J., Jung, S.H. (2012). Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation, Construction and Building Materials, 29(2), 183-192. https://doi.org/10.1016/j.conbuildmat.2011.09.019
  16. Russell, H.G., Graybeal, B.A. (2013). Ultra-high Performance Concrete: A State-of-the-art Report for the Bridge Community, No. FHWA-HRT-13-060, 22-86.
  17. Rafat, S., Navneet, K.C. (2011). Effect of ureolytic bacteria on conrete properties, Construction and Building Materials, 25, 3791-3801. https://doi.org/10.1016/j.conbuildmat.2011.04.010
  18. Ranade, R., Li, V.C., Stults, M.D., Heard, W.F., Rushing, T.S.(2013). Composite properties of high-Strength, high ductilityconcrete, ACI Materials Journal, 110(4), 413-422.
  19. Ramachandran, S.K., Ramakrishnan, V., Bang, S.S. (2001).Remediation of concrete using micro-organisms, ACI MaterialsJournal, 98, 3-9.
  20. Song, H.W., Cho, H.J., Park, S.S., Byun, K.J,. Maekawa, K.(2001). Early-age cracking resistance evaluation of concretestructure, Concrete Science Engineering, 3(1), 62-72.
  21. Song, H.W., Kwon, S.J., Byun, K.J., Park, C.K. (2006). Predictingcarbonation in early-aged cracked concrete, Cement andConcrete Research, 36(5), 979-989. https://doi.org/10.1016/j.cemconres.2005.12.019
  22. Tang, L. (1996b). Electrically accelerated methods for determining chloride diffusivity in concrete-current development, Magazine of Concrete Research, 48(176), 173-179. https://doi.org/10.1680/macr.1996.48.176.173
  23. Tziviloglou, E., Wiktor, V., Jonkers, V.H., Schlangen, E. (2016). Bacteria-based self-healing concrete to increase liquid tightness of cracks, Construction and Building Materials, 122, 118-125. https://doi.org/10.1016/j.conbuildmat.2016.06.080
  24. Yang, K.H., Yoon, H.S., Lee, S.S. (2016). Sulfate resistance coating technology for concrete drain pipe using bacteria slime, Megazine of the Korea Concrete Institute, 28(3), 18-22 [in Korean].
  25. Yokozeki, K., Okada, K., Tsutsumi, T., Watanabe, K. (1998). Prediction of the service life of RC with crack exposed to chloride attack, Japan Symposium of Rehabilitation of Concrete Structure, 10(1), 1-6 [in Japanese].