DOI QR코드

DOI QR Code

Endophilin A2: A Potential Link to Adiposity and Beyond

  • Alfadda, Assim A. (Obesity Research Center, College of Medicine, King Saud University) ;
  • Sallam, Reem M. (Obesity Research Center, College of Medicine, King Saud University) ;
  • Gul, Rukhsana (Obesity Research Center, College of Medicine, King Saud University) ;
  • Hwang, Injae (Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Ka, Sojeong (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2017.07.19
  • Accepted : 2017.09.20
  • Published : 2017.11.30

Abstract

Adipose tissue plays a central role in regulating dynamic cross-talk between tissues and organs. A detailed description of molecules that are differentially expressed upon changes in adipose tissue mass is expected to increase our understanding of the molecular mechanisms that underlie obesity and related metabolic co-morbidities. Our previous studies suggest a possible link between endophilins (SH3Grb2 proteins) and changes in body weight. To explore this further, we sought to assess the distribution of endophilin A2 (EA2) in human adipose tissue and experimental animals. Human paired adipose tissue samples (subcutaneous and visceral) were collected from subjects undergoing elective abdominal surgery and abdominal liposuction. We observed elevated EA2 gene expression in the subcutaneous compared to that in the visceral human adipose tissue. EA2 gene expression negatively correlated with adiponectin and chemerin in visceral adipose tissue, and positively correlated with $TNF-{\alpha}$ in subcutaneous adipose tissue. EA2 gene expression was significantly downregulated during differentiation of preadipocytes in vitro. In conclusion, this study provides a description of EA2 distribution and emphasizes a need to study the roles of this protein during the progression of obesity.

Keywords

References

  1. Alessi, M.C., Peiretti, F., Morange, P., Henry, M., Nalbone, G., and Juhan-Vague, I. (1997). Production of plasminogen activator inhibitor 1 by human adipose tissue: possible link between visceral fat accumulation and vascular disease. Diabetes 46, 860-867. https://doi.org/10.2337/diab.46.5.860
  2. Alfadda, A.A., Fatma, S., Chishti, M.A., Al-Naami, M.Y., Elawad, R., Mendoza, C.D., Jo, H., and Lee, Y.S. (2012a). Orosomucoid serum concentrations and fat depot-specific mRNA and protein expression in humans. Mol. Cells 33, 35-41. https://doi.org/10.1007/s10059-012-2181-9
  3. Alfadda, A.A., Sallam, R.M., Chishti, M.A., Moustafa, A.S., Fatma, S., Alomaim, W.S., Al-Naami, M.Y., Bassas, A.F., Chrousos, G.P., and Jo, H. (2012b). Differential patterns of serum concentration and adipose tissue expression of chemerin in obesity: adipose depot specificity and gender dimorphism. Mol. Cells 33, 591-596. https://doi.org/10.1007/s10059-012-0012-7
  4. Alfadda, A.A., Turjoman, A.A., Moustafa, A.S., Al-Naami, M.Y., Chishti, M.A., Sallam, R.M., Gibson, D., and Duncan, M.W. (2014). A proteomic analysis of excreted and circulating proteins from obese patients following two different weight-loss strategies. Exp. Biol. Med. (Maywood) 239, 568-580. https://doi.org/10.1177/1535370214523894
  5. Baldassarre, T., Watt, K., Truesdell, P., Meens, J., Schneider, M.M., Sengupta, S.K., and Craig, A.W. (2015). Endophilin A2 promotes TNBC cell invasion and tumor metastasis. Mol. Cancer Res. 13, 1044-1055. https://doi.org/10.1158/1541-7786.MCR-14-0573
  6. Balshem, H., Helfand, M., Schunemann, H.J., Oxman, A.D., Kunz, R., Brozek, J., Vist, G.E., Falck-Ytter, Y., Meerpohl, J., Norris, S., et al. (2011). GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 64, 401-406. https://doi.org/10.1016/j.jclinepi.2010.07.015
  7. Bouwman, F.G., Claessens, M., van Baak, M.A., Noben, J.P., Wang, P., Saris, W.H., and Mariman, E.C. (2009). The physiologic effects of caloric restriction are reflected in the in vivo adipocyte-enriched proteome of overweight/obese subjects. J. Proteome Res. 8, 5532-5540. https://doi.org/10.1021/pr900606m
  8. Bouwman, F.G., Wang, P., van Baak, M., Saris, W.H., and Mariman, E.C. (2014). Increased beta-oxidation with improved glucose uptake capacity in adipose tissue from obese after weight loss and maintenance. Obesity 22, 819-827. https://doi.org/10.1002/oby.20359
  9. Cao, H. (2014). Adipocytokines in obesity and metabolic disease. J. Endocrinol. 220, T47-59. https://doi.org/10.1530/JOE-13-0339
  10. Conner, S.D., and Schmid, S.L. (2003). Regulated portals of entry into the cell. Nature 422, 37-44. https://doi.org/10.1038/nature01451
  11. Curtis, K.M., Gomez, L.A., Rios, C., Garbayo, E., Raval, A.P., Perez-Pinzon, M.A., and Schiller, P.C. (2010). EF1alpha and RPL13a represent normalization genes suitable for RT-qPCR analysis of bone marrow derived mesenchymal stem cells. BMC Mol. Biol. 11, 61. https://doi.org/10.1186/1471-2199-11-61
  12. Farsad, K., Ringstad, N., Takei, K., Floyd, S.R., Rose, K., and De Camilli, P. (2001). Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155, 193-200. https://doi.org/10.1083/jcb.200107075
  13. Fried, S.K., Bunkin, D.A., and Greenberg, A.S. (1998). Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metabol. 83, 847-850.
  14. Gu, Y., Zhao, A., Huang, F., Zhang, Y., Liu, J., Wang, C., Jia, W., and Xie, G. (2013). Very low carbohydrate diet significantly alters the serum metabolic profiles in obese subjects. J. Proteome Res. 12, 5801-5811. https://doi.org/10.1021/pr4008199
  15. Henne, W.M., Kent, H.M., Ford, M.G., Hegde, B.G., Daumke, O., Butler, P.J., Mittal, R., Langen, R., Evans, P.R., and McMahon, H.T. (2007). Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Structure 15, 839-852. https://doi.org/10.1016/j.str.2007.05.002
  16. Hotamisligil, G.S. (2006). Inflammation and metabolic disorders. Nature 444, 860-867. https://doi.org/10.1038/nature05485
  17. Huang, E.W., Liu, C.Z., Liang, S.J., Zhang, Z., Lv, X.F., Liu, J., Zhou, J.G., Tang, Y.B., and Guan, Y.Y. (2016). Endophilin-A2-mediated increase in scavenger receptor expression contributes to macrophage-derived foam cell formation. Atherosclerosis 254, 133-141. https://doi.org/10.1016/j.atherosclerosis.2016.10.009
  18. Itoh, T., and De Camilli, P. (2006). BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim. Biophys. Acta 1761, 897-912. https://doi.org/10.1016/j.bbalip.2006.06.015
  19. Kamal, A.H., Kim, W.K., Cho, K., Park, A., Min, J.K., Han, B.S., Park, S.G., Lee, S.C., and Bae, K.H. (2013). Investigation of adipocyte proteome during the differentiation of brown preadipocytes. J. Proteomics 94, 327-336. https://doi.org/10.1016/j.jprot.2013.10.005
  20. Kim, S.Y., Kim, A.Y., Lee, H.W., Son, Y.H., Lee, G.Y., Lee, J.W., Lee, Y.S., and Kim, J.B. (2010). miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem. Biophys. Res. Commun. 392, 323-328. https://doi.org/10.1016/j.bbrc.2010.01.012
  21. Kjaerulff, O., Brodin, L., and Jung, A. (2011). The structure and function of endophilin proteins. Cell Biochem. Biophys. 60, 137-154. https://doi.org/10.1007/s12013-010-9137-5
  22. Lee, Y.S., Kim, A.Y., Choi, J.W., Kim, M., Yasue, S., Son, H.J., Masuzaki, H., Park, K.S., and Kim, J.B. (2008). Dysregulation of adipose glutathione peroxidase 3 in obesity contributes to local and systemic oxidative stress. Mol. Endocrinol. 22, 2176-2189. https://doi.org/10.1210/me.2008-0023
  23. Liu, C.Z., Li, X.Y., Du, R.H., Gao, M., Ma, M.M., Li, F.Y., Huang, E.W., Sun, H.S., Wang, G.L., and Guan, Y.Y. (2016). Endophilin A2 influences volume-regulated chloride current by mediating ClC-3 trafficking in vascular smooth muscle cells. Circ. J. 80, 2397-2406. https://doi.org/10.1253/circj.CJ-16-0793
  24. McGown, C., Birerdinc, A., and Younossi, Z.M. (2014). Adipose tissue as an endocrine organ. Clin. Liver Dis. 18, 41-58. https://doi.org/10.1016/j.cld.2013.09.012
  25. McTernan, P.G., Anderson, L.A., Anwar, A.J., Eggo, M.C., Crocker, J., Barnett, A.H., Stewart, P.M., and Kumar, S. (2002). Glucocorticoid regulation of p450 aromatase activity in human adipose tissue: gender and site differences. J. Clin. Endocrinol. Metabol. 87, 1327-1336. https://doi.org/10.1210/jcem.87.3.8288
  26. Montague, C.T., Prins, J.B., Sanders, L., Zhang, J., Sewter, C.P., Digby, J., Byrne, C.D., and O'Rahilly, S. (1998). Depot-related gene expression in human subcutaneous and omental adipocytes. Diabetes 47, 1384-1391. https://doi.org/10.2337/diabetes.47.9.1384
  27. O'Rahilly, S. (2016). Harveian Oration 2016: Some observations on the causes and consequences of obesity. Clin. Med. 16, 551-564.
  28. Ochoa, G.C., Slepnev, V.I., Neff, L., Ringstad, N., Takei, K., Daniell, L., Kim, W., Cao, H., McNiven, M., Baron, R., et al. (2000). A functional link between dynamin and the actin cytoskeleton at podosomes. J. Cell Biol. 150, 377-389. https://doi.org/10.1083/jcb.150.2.377
  29. Palfy, M., Remenyi, A., and Korcsmaros, T. (2012). Endosomal crosstalk: meeting points for signaling pathways. Trends Cell Biol. 22, 447-456. https://doi.org/10.1016/j.tcb.2012.06.004
  30. Peter, B.J., Kent, H.M., Mills, I.G., Vallis, Y., Butler, P.J., Evans, P.R., and McMahon, H.T. (2004). BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495-499. https://doi.org/10.1126/science.1092586
  31. Ringstad, N., Gad, H., Low, P., Di Paolo, G., Brodin, L., Shupliakov, O., and De Camilli, P. (1999). Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron 24, 143-154. https://doi.org/10.1016/S0896-6273(00)80828-4
  32. Romacho, T., Elsen, M., Rohrborn, D., and Eckel, J. (2014). Adipose tissue and its role in organ crosstalk. Acta Physiol (Oxf) 210, 733-753. https://doi.org/10.1111/apha.12246
  33. Ross, J.A., Chen, Y., Muller, J., Barylko, B., Wang, L., Banks, H.B., Albanesi, J.P., and Jameson, D.M. (2011). Dimeric endophilin A2 stimulates assembly and GTPase activity of dynamin 2. Biophys. J. 100, 729-737. https://doi.org/10.1016/j.bpj.2010.12.3717
  34. Saksela, K., and Permi, P. (2012). SH3 domain ligand binding: What's the consensus and where's the specificity? FEBS Lett. 586, 2609-2614. https://doi.org/10.1016/j.febslet.2012.04.042
  35. Samaras, K., Botelho, N.K., Chisholm, D.J., and Lord, R.V. (2010). Subcutaneous and visceral adipose tissue gene expression of serum adipokines that predict type 2 diabetes. Obesity (Silver Spring) 18, 884-889. https://doi.org/10.1038/oby.2009.443
  36. Sanchez-Barrena, M.J., Vallis, Y., Clatworthy, M.R., Doherty, G.J., Veprintsev, D.B., Evans, P.R., and McMahon, H.T. (2012). Bin2 is a membrane sculpting N-BAR protein that influences leucocyte podosomes, motility and phagocytosis. PLoS One 7, e52401. https://doi.org/10.1371/journal.pone.0052401
  37. Shimada, A., Niwa, H., Tsujita, K., Suetsugu, S., Nitta, K., Hanawa-Suetsugu, K., Akasaka, R., Nishino, Y., Toyama, M., Chen, L., et al. (2007). Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell 129, 761-772. https://doi.org/10.1016/j.cell.2007.03.040
  38. Soubeyran, P., Kowanetz, K., Szymkiewicz, I., Langdon, W.Y., and Dikic, I. (2002). Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 416, 183-187. https://doi.org/10.1038/416183a
  39. Speakman, J.R., and Mitchell, S.E. (2011). Caloric restriction. Mol. Aspects Med. 32, 159-221. https://doi.org/10.1016/j.mam.2011.07.001
  40. Suganami, T., Nishida, J., and Ogawa, Y. (2005). A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler. Thromb. Vasc. Biol. 25, 2062-2068. https://doi.org/10.1161/01.ATV.0000183883.72263.13
  41. Sun, K., Kusminski, C.M., and Scherer, P.E. (2011). Adipose tissue remodeling and obesity. J. Clin. Invest. 121, 2094-2101. https://doi.org/10.1172/JCI45887
  42. Tang, Y., Hu, L.A., Miller, W.E., Ringstad, N., Hall, R.A., Pitcher, J.A., DeCamilli, P., and Lefkowitz, R.J. (1999). Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the beta1-adrenergic receptor. Proc. Natl. Acad. Sci. USA 96, 12559-12564. https://doi.org/10.1073/pnas.96.22.12559
  43. Tsihlias, E.B., Gibbs, A.L., McBurney, M.I., and Wolever, T.M. (2000). Comparison of high- and low-glycemic-index breakfast cereals with monounsaturated fat in the long-term dietary management of type 2 diabetes. Am. J. Clin. Nutr. 72, 439-449. https://doi.org/10.1093/ajcn/72.2.439
  44. Vogel, C., and Marcotte, E.M. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13, 227-232. https://doi.org/10.1038/nrg3185
  45. Wellen, K.E., and Hotamisligil, G.S. (2005). Inflammation, stress, and diabetes. J. Clin. Invest. 115, 1111-1119. https://doi.org/10.1172/JCI25102
  46. Yam, J.W., Jin, D.Y., So, C.W., and Chan, L.C. (2004). Identification and characterization of EBP, a novel EEN binding protein that inhibits Ras signaling and is recruited into the nucleus by the MLL-EEN fusion protein. Blood 103, 1445-1453.

Cited by

  1. Effects of Three Thiazolidinediones on Metabolic Regulation and Cold-Induced Thermogenesis vol.41, pp.10, 2017, https://doi.org/10.14348/molcells.2018.0294
  2. Genome wide DNA differential methylation regions in colorectal cancer patients in relation to blood related family members, obese and non-obese controls – a preliminary report vol.9, pp.39, 2017, https://doi.org/10.18632/oncotarget.25374