DOI QR코드

DOI QR Code

A Review of Research on the Maturation of Children and Adolescences' Brain Structure and the Influence of Intelligence

아동·청소년기 뇌 구조의 성숙과 이에 대한 지능의 영향

  • Received : 2017.10.27
  • Accepted : 2017.11.03
  • Published : 2017.12.30

Abstract

The anatomical structure of the brain reflects a great amount of information about an individual's cognitive ability. The present study reviewed research on developmental changes in brain structure in relation to biological maturation and intellectual growth focusing on children and adolescents. The purpose of the present study was to achieve an understanding of how children and adolescents' brain matures with development and also to examine whether individual differences in intelligence influences the development of brain structure. The first section introduces methods of measurement and analysis of brain structure, such as voxel-based morphometry and structural covariance. The second section reviews studies on the biological maturation of the brain and variables that influence brain development such as sex, environmental factors, and mental disorders, etc. The third section introduces the Parieto-Frontal Integration Theory of intelligence and reviews studies on the association between intelligence and developmental changes of the brain, including changes in structural covariance and functional connectivity. We conclude with a discussion on educational/clinical implications of this work and directions for future studies.

뇌의 해부학적 구조에는 개인의 인지적 특성에 대한 많은 정보가 반영된다. 본 연구는 아동과 청소년을 대상으로 생물학적 성숙과 지능의 개인차와 관련한 대뇌의 구조적 변화와 특성을 관찰한 연구들을 중점적으로 개관하였다. 본 연구의 목적은 아동과 청소년의 뇌 구조의 발달 과정을 이해함과 동시에 개인의 지능에 따라 뇌 구조가 발달하는 패턴이 어떠한 차이가 있는지를 알아보는 것이다. 첫 번째 단원에서는 뇌의 구조적 특성에 대한 측정치들(전체 뇌의 크기나 부피, 영역 별 회백질/백질의 부피와 밀도, 피질 두께, 피질 표면적 등)과 부피소-기반 계측법 및 구조적 공분산성 분석 등의 연구 방법들을 설명한다. 두 번째 단원에서는 생물학적 성숙에 따른 뇌 구조의 발달적 변화와 이에 영향을 미치는 변수와 조절 변인들(성별, 정신/발달 장애, 환경 요인, 영역 별 피질의 층 구조)을 설명한다. 세 번째 단원에서는 지능의 두정-전두 통합 이론을 소개하고 뇌 구조 및 뇌의 구조적 공분산성, 기능적 연결성의 발달적 변화가 지능의 개인차에 따라 어떻게 달라지는지에 대한 연구 결과들을 개관한다. 끝으로, 결론 부분에서는 현재까지 이루어진 연구들을 기반으로 하여 후속 연구의 방향과 이 분야 연구의 사회적 가치를 논한다.

Keywords

References

  1. Alexander-Bloch, A., Giedd, J. N., & Bullmore, E. (2013). Imaging structural co-variance between human brain regions. Nature Reviews Neuroscience, 14(5), 322-336. https://doi.org/10.1038/nrn3465
  2. Basten, U., Hilger, K., & Fiebach, C. J. (2015). Where smart brains are different: a quantitative meta-analysis of functional and structural brain imaging studies on intelligence. Intelligence, 51, 10-27. https://doi.org/10.1016/j.intell.2015.04.009
  3. Bickart, K. C., Wright, C. I., Dautoff, R. J., Dickerson, B. C., & Barrett, L. F. (2011). Amygdala volume and social network size in humans. Nature neuroscience, 14(2), 163. https://doi.org/10.1038/nn.2724
  4. Brant, A. M., Munakata, Y., Boomsma, D. I., DeFries, J. C., Haworth, C. M., Keller, M. C., ... & Wadsworth, S. J. (2013). The nature and nurture of high IQ: an extended sensitive period for intellectual development. Psychological science, 24(8), 1487-1495. https://doi.org/10.1177/0956797612473119
  5. Burgaleta, M., Johnson, W., Waber, D. P., Colom, R., & Karama, S. (2014). Cognitive ability changes and dynamics of cortical thickness development in healthy children and adolescents. NeuroImage, 84, 810-819. https://doi.org/10.1016/j.neuroimage.2013.09.038
  6. Cole, M. W., Yarkoni, T., Repovš, G., Anticevic, A., & Braver, T. S. (2012). Global connectivity of prefrontal cortex predicts cognitive control and intelligence. Journal of Neuroscience, 32(26), 8988-8999. https://doi.org/10.1523/JNEUROSCI.0536-12.2012
  7. Colom, R., Karama, S., Jung, R. E., & Haier, R. J. (2010). Human intelligence and brain networks. Dialogues in clinical neuroscience, 12(4), 489.
  8. Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence differences. Nature Reviews Neuroscience, 11(3), 201-211. https://doi.org/10.1038/nrn2793
  9. Dumontheil, I., Hassan, B., Gilbert, S. J., & Blakemore, S. J. (2010). Development of the selection and manipulation of self-generated thoughts in adolescence. Journal of Neuroscience, 30(22), 7664-7671. https://doi.org/10.1523/JNEUROSCI.1375-10.2010
  10. Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., ... & Constable, R. T. (2015). Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nature neuroscience, 18(11), 1664-1671. https://doi.org/10.1038/nn.4135
  11. Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., ... & Rapoport, J. L. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature neuroscience, 2(10), 861-863. https://doi.org/10.1038/13158
  12. Giedd, J. N., Lenroot, R. K., Shaw, P., Lalonde, F., Celano, M., White, S., ... & Gogtay, N. (2008). Trajectories of anatomic brain development as a phenotype. In Novartis Foundation Symposium (Vol. 289, p. 101). NIH Public Access.
  13. Giedd, J. N., & Rapoport, J. L. (2010). Structural MRI of pediatric brain development: what have we learned and where are we going?. Neuron, 67(5), 728-734. https://doi.org/10.1016/j.neuron.2010.08.040
  14. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., ... & Rapoport, J. L. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National academy of Sciences of the United States of America, 101(21), 8174-8179. https://doi.org/10.1073/pnas.0402680101
  15. Goh, S., Bansal, R., Xu, D., Hao, X., Liu, J., & Peterson, B. S. (2011). Neuroanatomical correlates of intellectual ability across the life span. Developmental cognitive neuroscience, 1(3), 305-312. https://doi.org/10.1016/j.dcn.2011.03.001
  16. Gray, J. R., & Thompson, P. M. (2004). Neurobiology of intelligence: science and ethics. Nature Reviews Neuroscience, 5(6), 471. https://doi.org/10.1038/nrn1405
  17. Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2004). Structural brain variation and general intelligence. Neuroimage, 23(1), 425-433. https://doi.org/10.1016/j.neuroimage.2004.04.025
  18. Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2005). The neuroanatomy of general intelligence: sex matters. NeuroImage, 25(1), 320-327. https://doi.org/10.1016/j.neuroimage.2004.11.019
  19. Hedman, A. M., van Haren, N. E., Schnack, H. G., Kahn, R. S., Pol, H., & Hilleke, E. (2012). Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Human brain mapping, 33(8), 1987-2002. https://doi.org/10.1002/hbm.21334
  20. Im, K., Lee, J. M., Yoon, U., Shin, Y. W., Hong, S. B., Kim, I. Y., ... & Kim, S. I. (2006). Fractal dimension in human cortical surface: multiple regression analysis with cortical thickness, sulcal depth, and folding area. Human brain mapping, 27(12), 994-1003. https://doi.org/10.1002/hbm.20238
  21. Ivanovic, D. M., Leiva, B. P., Perez, H. T., Olivares, M. G., Diaz, N. S., Urrutia, M. S. C., ... & Larrai n, C. G. (2004). Head size and intelligence, learning, nutritional status and brain development: head, IQ, learning, nutrition and brain. Neuropsychologia, 42(8), 1118-1131. https://doi.org/10.1016/j.neuropsychologia.2003.11.022
  22. Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence:converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2), 135-154. https://doi.org/10.1017/S0140525X07001185
  23. Kanai, R., & Rees, G. (2011). The structural basis of inter-individual differences in human behaviour and cognition. Nature Reviews Neuroscience, 12(4), 231-242. https://doi.org/10.1038/nrn3000
  24. Karama, S., Ad-Dab'bagh, Y., Haier, R. J., Deary, I. J., Lyttelton, O. C., Lepage, C., ... & Brain Development Cooperative Group. (2009). Positive association between cognitive ability and cortical thickness in a representative US sample of healthy 6 to 18 year-olds. Intelligence, 37(2), 145. https://doi.org/10.1016/j.intell.2008.09.006
  25. Khundrakpam, B. S., Lewis, J. D., Reid, A., Karama, S., Zhao, L., Chouinard-Decorte, F., ... & Brain Development Cooperative Group. (2017). Imaging structural covariance in the development of intelligence. Neuroimage, 144, 227-240. https://doi.org/10.1016/j.neuroimage.2016.08.041
  26. Lange, N., Froimowitz, M. P., Bigler, E. D., Lainhart, J. E., & Brain Development Cooperative Group. (2010). Associations between IQ, total and regional brain volumes, and demography in a large normative sample of healthy children and adolescents. Developmental neuropsychology, 35(3), 296-317. https://doi.org/10.1080/87565641003696833
  27. Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., ... & Thompson, P. M. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage, 36(4), 1065-1073. https://doi.org/10.1016/j.neuroimage.2007.03.053
  28. Lerch, J. P., Worsley, K., Shaw, W. P., Greenstein, D. K., Lenroot, R. K., Giedd, J., & Evans, A. C. (2006). Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage, 31(3), 993-1003. https://doi.org/10.1016/j.neuroimage.2006.01.042
  29. Li, Y., Liu, Y., Li, J., Qin, W., Li, K., Yu, C., & Jiang, T. (2009). Brain anatomical network and intelligence. PLoS computational biology, 5(5), e1000395. https://doi.org/10.1371/journal.pcbi.1000395
  30. Luders, E., Narr, K. L., Bilder, R. M., Szeszko, P. R., Gurbani, M. N., Hamilton, L., ... & Gaser, C. (2007). Mapping the relationship between cortical convolution and intelligence: effects of gender. Cerebral Cortex, 18(9), 2019-2026. https://doi.org/10.1093/cercor/bhm227
  31. Luders, E., Narr, K. L., Thompson, P. M., & Toga, A. W. (2009). Neuroanatomical correlates of intelligence. Intelligence, 37(2), 156-163. https://doi.org/10.1016/j.intell.2008.07.002
  32. Lyttelton O, Boucher M, Robbins S, Evans A. (2007). An unbiased iterative group registration template for cortical surface analysis. Neuroimage, 34, 1535-1544. https://doi.org/10.1016/j.neuroimage.2006.10.041
  33. Mackintosh, N. J. (2011). IQ and Human Intelligence. Oxford University Press.
  34. McDaniel, M. A. (2005). Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence, 33(4), 337-346. https://doi.org/10.1016/j.intell.2004.11.005
  35. Mechelli, A., Friston, K. J., Frackowiak, R. S., & Price, C. J. (2005a). Structural covariance in the human cortex. Journal of Neuroscience, 25(36), 8303-8310. https://doi.org/10.1523/JNEUROSCI.0357-05.2005
  36. Mechelli, A., Price, C. J., Friston, K. J., & Ashburner, J. (2005b). Voxel-based morphometry of the human brain: methods and applications. Current medical Imaging reviews, 1(2), 105-113. https://doi.org/10.2174/1573405054038726
  37. Menary, K., Collins, P. F., Porter, J. N., Muetzel, R., Olson, E. A., Kumar, V., ... & Luciana, M. (2013). Associations between cortical thickness and general intelligence in children, adolescents and young adults. Intelligence, 41(5), 597-606. https://doi.org/10.1016/j.intell.2013.07.010
  38. Narr, K. L., Woods, R. P., Thompson, P. M., Szeszko, P., Robinson, D., Dimtcheva, T., ... & Bilder, R. M. (2006). Relationships between IQ and regional cortical gray matter thickness in healthy adults. Cerebral cortex, 17(9), 2163-211.
  39. Noble, K. G., Houston, S. M., Kan, E., & Sowell, E. R. (2012). Neural correlates of socioeconomic status in the developing human brain. Developmental science, 15(4), 516-527. https://doi.org/10.1111/j.1467-7687.2012.01147.x
  40. Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Jernigan, T. L., Prom-Wormley, E., Neale, M., ... & Xian, H. (2009). Distinct genetic influences on cortical surface area and cortical thickness. Cerebral cortex, 19(11), 2728-2735. https://doi.org/10.1093/cercor/bhp026
  41. Price, C. J., Ramsden, S., Hope, T. M. H., Friston, K. J., & Seghier, M. L. (2013). Predicting IQ change from brain structure: a cross-validation study. Developmental cognitive neuroscience, 5, 172-184. https://doi.org/10.1016/j.dcn.2013.03.001
  42. Querbes, O., Aubry, F., Pariente, J., Lotterie, J. A., Demonet, J. F., Duret, V., ... & Alzheimer's Disease Neuroimaging Initiative. (2009). Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve. Brain, 132(8), 2036-2047. https://doi.org/10.1093/brain/awp105
  43. Ramsden, S., Richardson, F. M., Josse, G., Thomas, M. S., Ellis, C., Shakeshaft, C., et al. (2011). Verbal and non-verbal intelligence changes in the teenage brain. Nature, 479(7371), 113-116. https://doi.org/10.1038/nature10514
  44. Raizada, R. D. S., & Kishiyama, M. M. (2010). Effects of Socioeconomic Status on Brain Development, and How Cognitive Neuroscience May Contribute to Levelling the Playing Field. Frontiers in Human Neuroscience, 4, 3.
  45. Rogers, J., Kochunov, P., Zilles, K., Shelledy, W., Lancaster, J., Thompson, P., ... & Glahn, D. C. (2010). On the genetic architecture of cortical folding and brain volume in primates. Neuroimage, 53(3), 1103-1108. https://doi.org/10.1016/j.neuroimage.2010.02.020
  46. Raznahan, A., & Bolton, P. (2008). Autism spectrum disorder in childhood. Medicine, 36(9), 489-492. https://doi.org/10.1016/j.mpmed.2008.07.005
  47. Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L., Greenstein, D., ... & Giedd, J. N. (2011). How does your cortex grow? Journal of Neuroscience, 31(19), 7174-7177. https://doi.org/10.1523/JNEUROSCI.0054-11.2011
  48. Rushton, J. P., & Ankney, C. D. (2009). Whole brain size and general mental ability: a review. International Journal of Neuroscience, 119(5), 692-732. https://doi.org/10.1080/00207450802325843
  49. Schmithorst, V. J., Wilke, M., Dardzinski, B. J., & Holland, S. K. (2005). Cognitive functions correlate with white matter architecture in a normal pediatric population: a diffusion tensor MRI study. Human brain mapping, 26(2), 139-147. https://doi.org/10.1002/hbm.20149
  50. Schmithorst, V. J., & Holland, S. K. (2006). Functional MRI evidence for disparate developmental processes underlying intelligence in boys and girls. Neuroimage, 31(3), 1366-1379. https://doi.org/10.1016/j.neuroimage.2006.01.010
  51. Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N. E. E. A., ... & Giedd, J. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440(7084), 676-679. https://doi.org/10.1038/nature04513
  52. Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., ... & Giedd, J. N. (2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28(14), 3586-3594. https://doi.org/10.1523/JNEUROSCI.5309-07.2008
  53. Song, M., Zhou, Y., Li, J., Liu, Y., Tian, L., Yu, C., & Jiang, T. (2008). Brain spontaneous functional connectivity and intelligence. Neuroimage, 41(3), 1168-1176. https://doi.org/10.1016/j.neuroimage.2008.02.036
  54. Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. Journal of Neuroscience, 24(38), 8223-8231. https://doi.org/10.1523/JNEUROSCI.1798-04.2004
  55. Tamnes, C. K., Fjell, A. M., Ostby, Y., Westlye, L. T., Due-Tonnessen, P., Bjornerud, A., & Walhovd, K. B. (2011). The brain dynamics of intellectual development: waxing and waning white and gray matter. Neuropsychologia, 49(13), 3605-3611. https://doi.org/10.1016/j.neuropsychologia.2011.09.012
  56. van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Pol, H. E. H. (2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29(23), 7619-7624. https://doi.org/10.1523/JNEUROSCI.1443-09.2009
  57. Wechsler, D. (2014). Wechsler intelligence scale for children-fifth edition. Bloomington, MN: Pearson.
  58. Wilke, M., Sohn, J. H., Byars, A. W., and Holland, S. K. (2003). Brightspots: correlations of gray matter volume with IQ in a normal pediatric population. Neuroimage 20, 202-215. https://doi.org/10.1016/S1053-8119(03)00199-X
  59. Yang, J. J., Yoon, U., Yun, H. J., Im, K., Choi, Y. Y., Lee, K. H., ... & Lee, J. M. (2013). Prediction for human intelligence using morphometric characteristics of cortical surface: partial least square analysis. Neuroscience, 246, 351-361. https://doi.org/10.1016/j.neuroscience.2013.04.051
  60. Zilles, K., Armstrong, E., Moser, K. H., Schleicher, A., & Stephan, H. (1989). Gyrification in the cerebral cortex of primates. Brain, Behavior and Evolution, 34(3), 143-150.
  61. Zielinski, B. A., Gennatas, E. D., Zhou, J., & Seeley, W. W. (2010). Network-level structural covariance in the developing brain. Proceedings of the National Academy of Sciences, 107(42), 18191-18196. https://doi.org/10.1073/pnas.1003109107