DOI QR코드

DOI QR Code

새로운 개념의 복합재 샌드위치 체결부 구조의 설계와 검증

Design and Verification of a Novel Composite Sandwich Joint Structure

  • Kwak, Byeong-Su (School of Mechanical and Aerospace and Engineering, Gyeongsang National University) ;
  • Ju, Hyun-woo (School of Mechanical and Aerospace and Engineering, Gyeongsang National University) ;
  • Kim, Hong-Il (Agency for Defense Development) ;
  • Dong, Seung-Jin (Hankuk Fiber Co., Ltd. Defence and Aerospace Division) ;
  • Kweon, Jin-Hwe (School of Mechanical and Aerospace and Engineering, Gyeongsang National University)
  • 투고 : 2017.10.10
  • 심사 : 2017.12.13
  • 발행 : 2017.12.31

초록

인장과 압축하중 모두를 효과적으로 지지할 수 있는 새로운 샌드위치 체결부 구조의 설계를 위해, 체결부 형상이 다른 3가지 샌드위치 판넬에 대한 인장 및 압축 시험을 수행하였다. 샌드위치 판넬의 코어는 주로 알루미늄 플렉스 허니콤이지만, 타 구조물과의 체결을 위해 두께가 얇아지면서 단순 적층판으로 변하는 램프 영역에서는 PMI 폼 코어를 사용하였고, 면재에는 탄소섬유 복합재를 사용하였다. 형상 1에서는 복합재 플랜지와 샌드위치 구조가 일체형으로 연결된다. 형상 2와 3에서는 별도로 제작된 알루미늄 플랜지가 복합재 적층판에 하이록핀과 접착제로 체결된다. 시험 결과 형상 1, 2, 3의 평균 압축파손하중은 각각 295 kN, 226 kN, 291 kN으로 나타났고, 평균 인장파손하중은 각각 47.3(층간분리), 83.7 kN(볼트파손), 291 kN(치구손상)으로 나타났다. 압축 파손하중만을 고려할 경우 플랜지와 샌드위치 판넬을 복합재 일체형으로 제작한 형상 1과 3이 우수한 특성을 보였다. 그러나 형상 1의 경우 인장하중을 받을 때 낮은 하중에서 플랜지 모서리 부분에서 층간분리가 발생하였다. 따라서 인장과 압축하중을 동시에 효과적으로 지지할 수 있는 구조는 모서리에서 층간분리의 위험이 없게 별도의 알루미늄 플랜지를 사용하여 볼트로 체결한 형상 3임을 확인하였다.

Sandwich panels with three different joint configurations were tested to design a novel sandwich joint structure that can effectively support both the tensile and compressive loads. The sandwich core was mainly aluminum flex honeycomb but the PMI foam core was limitedly applied to the ramp area which is transition part from sandwich to solid laminate. The face of sandwich panel was made of carbon fiber composite. For configuration 1, the composite flange and the sandwich panel were cocured. For configurations 2 and 3, an aluminum flange was fastened to the solid laminate by HI-LOK pins and adhesive. The average compressive failure loads of configurations 1, 2, and 3 were 295, 226, and 291 kN, respectively, and the average tensile failure loads were 47.3 (delamination), 83.7 (bolt failure), and 291 (fixture damage) kN, respectively. Considering the compressive failure loads only, both the configurations 1 and 3 showed good performance. However, the configuration 1 showed delamination in the corner of the composite flange under tension at early stage of loading. Therefore, it was confirmed that the structure that can effectively support tension and compressive loads at the same time is the configuration 3 which used a mechanically fastened aluminum flange so that there is no risk of delamination at the corner.

키워드

참고문헌

  1. Belingardi, G., Cavatorta, M.P., and Duella, R., "Material Characterization of a Composite-Foam Sandwich for the front Structure of a High Speed Train", Composite Structures, Vol. 61, No. 1-2, 2003, pp. 13-25. https://doi.org/10.1016/S0263-8223(03)00028-X
  2. Zenkert, D., Shipsha, A., Bull, P., and Hayman, B., "Damage Tolerance Assessment of Composite Sandwich Panels with Localized Damage", Composites Science and Technology, Vol. 65, No. 15-16, 2005, pp. 2597-2611. https://doi.org/10.1016/j.compscitech.2005.05.026
  3. Kim, J.S., Lee, S.J., and Shin, K.B., "Manufacturing and Structural Safety Evaluation of a Composite Train Carbody", Composite Structures, Vol. 78, No. 4, 2007, pp. 468-476. https://doi.org/10.1016/j.compstruct.2005.11.006
  4. Leijten, J., Harald, E.N., Bergsma, O.K., and Beukers, A., "Experimental Study of the Low-velocity Impact Behaviour of Primary Sandwich Structures in Aircraft", Composites: Part A, Vol. 40, No. 2, 2009, pp. 164-175. https://doi.org/10.1016/j.compositesa.2008.10.019
  5. Thomsen, O.T., "Sandwich Materials for Wind Turbine Blades - Present and Future", Journal of Sandwich Structures and Materials, Vol. 11, No. 1, 2009, pp. 17-26.
  6. Baral, N., Cartie, D.D.R., Partridge, I.K., Baley, C., and Davies, P., "Improved Impact Performance of Marine Sandwich Panels using Through Thickness Reinforcement", Composites Part B: Engineering , Vol. 41, No. 2, 2010, pp. 117-123. https://doi.org/10.1016/j.compositesb.2009.12.002
  7. Zinno, A., Fusco, E., Prota, A., and Manfredi, G., "Multiscale Approach for the Design of Composite Sandwich Structures for Train Application", Composite Structures, Vol. 92, No. 9, 2010, pp. 2208-2219. https://doi.org/10.1016/j.compstruct.2009.08.044
  8. Cho, H.K., and Rhee, J., "Vibration in a Satellite Structure with a Laminate Composite Hybrid Sandwich Panel", Composite Structures, Vol. 93, No. 10, 2011, pp. 2566-2574. https://doi.org/10.1016/j.compstruct.2011.04.019
  9. Choi, B.H., Shin, S.J., Song, M.H., Choi, J.H., and Kweon, J.H., "Strength of Sandwich-to-Laminate Single-lap Bonded Joints in Elevated Temperature and Wet Condition", Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 38, No.11, 2010, pp. 1115-1122. https://doi.org/10.5139/JKSAS.2010.38.11.1115
  10. Heimbs, S., and Pein, M., "Failure Behaviour of Honeycomb Sandwich Corner Joints and Inserts", Composite Structures, Vol. 89, No. 4, 2009, pp. 575-588. https://doi.org/10.1016/j.compstruct.2008.11.013
  11. Kim, K.S., An, J.M., Jang, Y.S., and Yi, J.M., "Strength Improvement of Insert Joint for Composite Sandwich Structure", Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 38, No. 1, 2010, pp. 29-34. https://doi.org/10.5139/JKSAS.2010.38.1.029
  12. Lim, J.W., and Lee, D.G., "Development of the Hybrid Insert for Composite Sandwich Satellite Structures", Composites: Part A, Vol. 42, No. 8, 2011, pp. 1040-1048. https://doi.org/10.1016/j.compositesa.2011.04.008
  13. Kuczma, S.K., and Vizzini, A.J., "Failure of Sandwich to Laminate Tapered Composite Structures", Journal of the American Institute of Aeronautics and Astronautics, Vol. 37, No. 2, 1999, pp. 227-231. https://doi.org/10.2514/2.694
  14. Paris, I.L., "Characterization of Composites Sandwich Ramp Failure Under Tensile Loading", Proceedings of the 17st International Conference on Composite Materials, Edinburgh, UK, Jul. 2009.
  15. Clifford, S.M., Manager, C.I.C., and Clyne, T.W., "Characterisation of a Glass-fiber Reinforced Vinylester to Steel Joint for Use between a Naval GRP Superstructure and a Steel Hull", Composite Structures, Vol. 57, No. 1-4, 2002, pp. 59-66. https://doi.org/10.1016/S0263-8223(02)00063-6
  16. Kwak, B.S., Kim, H.I., Dong, S.J., Choi, J.H., and Kweon, J. H., "An Experimental Study on the Failure of a Novel Composite Sandwich Structure", Composites Research, Vol. 29, No. 4, 2016, pp. 209-215. https://doi.org/10.7234/composres.2016.29.4.209
  17. Standard Test Method for Edgewise Compressive Strength of Sandwich Constructions, ASTM Standard C364.
  18. Kim, J.H., Han, J.S., Bae, B.H., Choi, J.H., and Kweon, J.H., "Manufacturing and Structural Analysis of Thick Composite Spar using AFP Machine", Composite Research, Vol. 28, No. 4, 2015, pp. 212-218. https://doi.org/10.7234/composres.2015.28.4.212