DOI QR코드

DOI QR Code

규소, 질소, 칼슘 단독 및 혼합처리가 벼 식물체 내 무기성분 흡수 및 식물호르몬 함량 변화에 미치는 영향

Changes in Mineral Uptake and Hormone Concentrations in Rice Plants Treated with Silicon, Nitrogen and Calcium Independently or in Combination

  • Jang, Soo-Won (Natural Resources Research Institute, R&D Headquarters, Korea Ginseng Corporation) ;
  • Kim, Yoon-Ha (Division of Plant Biosciences, Kyungpook National University) ;
  • Na, Chae-In (Department of Agronomy, Gyeongsang National University) ;
  • Lee, In-Jung (Division of Plant Biosciences, Kyungpook National University)
  • 투고 : 2017.07.20
  • 심사 : 2017.09.07
  • 발행 : 2017.12.31

초록

벼 식물체에 규소, 질소, 칼슘을 단독 및 혼합 처리할 경우 무기이온의 흡수와 식물호르몬 $GA_1$과 JA 함량변화에 미친 결과는 아래와 같다. 1. 질소와 칼슘이온은 규소처리에 의해 흡수가 억제된 것으로 조사됐고, 마그네슘 함량은 규소, 질소, 칼슘 단독 및 혼합처리에서 무처리보다 증가하였다. 2. 식물호르몬 ABA의 함량은 모든 처리에서 무처리와 차이가 없었다. 3. 식물호르몬 $GA_1$의 함량은 질소와 규소 혼합처리에서 가장 높았고, 다음으로 질소 단독처리 규소 단독처리 순으로 높았다. 반면 칼슘 단독처리 및 칼슘과 규소 혼합처리에서 $GA_1$함량은 차이가 없었고, 이러한 결과는 규소, 질소 및 칼슘 처리 후 12시간 및 24시간에서도 동일한 양상을 보였다. 4. 규소, 질소, 칼슘 단독 및 혼합처리 후 6시간 뒤 식물호르몬 JA 함량은 모든 처리에서 무처리보다 증가하였고, 특히 규소와 질소 혼합처리에서 가장 높게 조사되었다. 그러나 처리 후 12시간과 24시간 후 조사에서는 칼슘 단독처리에서 JA 함량이 무처리와 차이가 없었고, 이외의 처리에서는 무처리보다 높았다.

To elucidate the physiological responses of rice plants to the essential mineral silicon (Si), we assessed the effects of treatments with Si, nitrogen ($NH_4NO_3$; ammonium nitrate), and calcium ($CaCl_2$; calcium chloride), independently or in combination on mineral uptake rates and levels of the hormones abscisic acid (ABA), gibberellin ($GA_1$) and jasmonic acid (JA). We found that nitrogen and calcium uptake was inhibited by Si application. However, solo application of nitrogen or calcium did not affect Si uptake. Compared to the untreated plants, the application of Si, $NH_4NO_3$ or $CaCl_2$ increased the endogenous hormone levels in treated plants. In particular, the concentrations of $GA_1$ and JA increased significantly after the application of Si or $NH_4NO_3$. The level of $GA_1$ observed after a treatment (solo or combine) with Si, and $NH_4NO_3$ was higher than that of the control. By contrast, independent application of $CaCl_2$ or a combined treatment with Si and $CaCl_2$ did not alter $GA_1$ levels. The highest level of $GA_1$ was present in plants given a combination treatment of Si and $NH_4NO_3$. This effect was observed at all time points (6 h, 12 h and 24 h). Endogenous JA contents were higher in all treatments than the control. In particular, a combination treatment with Si and $NH_4NO_3$ significantly increased the JA levels in plants compared to other treatments at all time points. A small increase in JA levels was observed after 6 h in plants given the $CaCl_2$ treatment. However, JA levels did not differ between plants given a $CaCl_2$ treatment and controls after 12 h or 24 h of exposure. We conclude that treatment with $CaCl_2$ alone does not affect endogenous JA levels in the short term. Endogenous ABA contents did not show any differences among the various treatments.

키워드

참고문헌

  1. Arigoni, D., S. Sagner, C. Latzel, W. Eisenreich, A. Bacher, and M. H. Zenk. 1997. Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. Proc. Natl. Acad. Sci. USA 94 : 10600-10605. https://doi.org/10.1073/pnas.94.20.10600
  2. Baldwin, I. T., E. A. Schmelz, and T. E. Ohnmeiss. 1994. Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris. J. Chem. Ecol. 20 : 2139-2157. https://doi.org/10.1007/BF02066250
  3. Blázquez, M. A., R. Green, O. Nilsson, M. R. Sussman, and D. Weigel. 1998. Gibberellins promote flowering of arabidopsis by activating the LEAFY promoter. The Plant Cell 10 : 791-800. https://doi.org/10.1105/tpc.10.5.791
  4. Bremond, L., A. Alexandre, C. Hély, and J. Guiot. 2005. A phytolith index as a proxy of tree cover density in tropical areas: calibration with Leaf Area Index along a forest-savanna transect in southeastern Cameroon. Global Planet. Change 45 : 277-293. https://doi.org/10.1016/j.gloplacha.2004.09.002
  5. Browning, G. and T. A. Wignall. 1987. Identification and quantification of indole-3-acetic and abscisic acids in the cambial region of Quercus robur by combined gas chromatography-mass spectrometry. Plant Physiol. 3 : 235-246.
  6. Cakmak, I. and H. Marschner. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 98 : 1222-1227. https://doi.org/10.1104/pp.98.4.1222
  7. Carver, T. L. W., R. J. Zeyen, and G. G. Ahlstrand. 1987. The relation between insoluble silicon and success of failure of attempted penetration by powdery mildew (Erysiphe graminis) germlings on barley. Physiol. Mol. Plant Pathol. 31 : 133-148. https://doi.org/10.1016/0885-5765(87)90012-9
  8. Cha-um, S., H. P. Singh, T. Samphumphuang, and C. Kirdmanee. 2012. Calcium-alleviated salt tolerance in indica rice ('Oryza sativa' L. spp. 'indica'): Physiological and morphological changes. Aust. J. Crop Sci. 6 : 176-182.
  9. Chen, W., X. Yao, K. Cai, and J. Chen. 2011. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol. Trace Elem. Res. 142 : 67-76. https://doi.org/10.1007/s12011-010-8742-x
  10. Cho, Y. S., W. T. Jeon, C. Y. Park, K. D. Park, and U. G. Kang. 2006. Study of nutrient uptake and physiological characteristics of rice by 15N and purified Si fertilization level in a transplanted pot experiment. Korean J. Crop Sci. 51 : 408-419.
  11. Choudhury, T. M. A. and Y. M. Khanif. 2001. Evaluation of effects of nitrogen and magnesium fertilization on rice yield and fertilizer nitrogen efficiency using 15N tracer technique. J. Plant Nut. 24 : 855-871. https://doi.org/10.1081/PLN-100103778
  12. Cooke, J. and M. R. Leishman. 2011. Is plant ecology more siliceous than we realise. Trends Plant Sci. 16 : 61-68.
  13. Deshmukh, R. K., J. Vivancos, G. Ramakrishnan, V. Guérin, G. Carpentier, H. Sonah, C. Labbé, P. Isenring, F. J. Belzile, and R. R. Bélanger. 2015. A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. Plant J. 83 : 489-500. https://doi.org/10.1111/tpj.12904
  14. Ding, Y., W. Luo, and G. Xu. 2006. Characterisation of magnesium nutrition and interaction of magnesium and potassium in rice. Ann. Applied Biol. 149 : 111-123. https://doi.org/10.1111/j.1744-7348.2006.00080.x
  15. Eckardt, N. A. 2002. Abscisic acid biosynthesis gene underscores the complexity of sugar, stress, and hormone interactions. Plant Cell 14 : 2645-2649. https://doi.org/10.1105/tpc.141110
  16. Epstein, E. 1999. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50 : 641-644. https://doi.org/10.1146/annurev.arplant.50.1.641
  17. Farmer, E. E. and C. A. Ryan. 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. 87 : 7713-7716. https://doi.org/10.1073/pnas.87.19.7713
  18. Hedden, P. and S. G. Thomas. 2012. Gibberellin biosynthesis and its regulation. Biochem. J. 444 : 11-25. https://doi.org/10.1042/BJ20120245
  19. Herde, O. H., L. Willmitzer, and J. Fisahn. 1997. Stomatal responses to jasmonic acid, linolenic acid and abscisic acid in wild-type and ABA-deficient tomato plants. Plant Cell Environ. 20 : 136-141. https://doi.org/10.1046/j.1365-3040.1997.d01-11.x
  20. Hwang, S. J., M. Hamayun, H. Y. Kim, C. I. Na, K. U. Kim, D. H. Shin, S. Y. Kim, and I. J. Lee. 2007. Effect of nitrogen and silicon nutrition on bioactive gibberellin and growth of rice under field conditions. J. Crop Sci. Biotech. 10 : 281-286.
  21. Jang, S. W., M. Hamayun, E. Y. Sohn, D. H. Shin, K. U. Kim, and I. J. Lee. 2007. Studies on the effect of silicon nutrition on plant growth, mineral contents and endogenous gibberellins of three rice cultivars. J. Crop Sci. Biotech. 10 : 47-51.
  22. Jang, S. W., M. Hamayun, E. Y. Sohn, D. H. Shin, K. U. Kim, B. H. Lee, and I. J. Lee. 2008. Effect of elevated nitrogen levels on endogenous gibberellin and jasmonic acid contents of three rice (Oryza sativa L.) cultivars. J Plant Nutr. Soil Sci. 171 : 181-186. https://doi.org/10.1002/jpln.200625025
  23. Jawahar, S. and V. Vaiyapuri. 2013. Effect of sulphur and silicon fertilization on yield, nutrient uptake and economics of rice. Int. Res. J. Chem. 1 : 34-43.
  24. Kang, Y. S., J. G. Lee, J. I. Kim, and J. S. Lee. 1997. Influence of silicate application on rice quality. Kor. J. Crop Sci. 42 : 800-804.
  25. Kamboj, J. S., G. Browning, P. S. Blake, J. D. Quinlan, and D. A. Baker. 1999. GC-MS-SIM analysis of abscisic acid and indole-3-acetic acid in shoot bark of apple rootstocks. Plant Growth Regul. 28 : 21-27. https://doi.org/10.1023/A:1006299414481
  26. Kim, C. B., N. K. Park, S. D. Park, D. U. Choi, S. G. Son, and J. Choi. 1986. Changes in rice yield and soil physicochemical properties as affected by annual application of silicate fertilizer to paddy soil. Kor. J. Soc. Soil Sci. Fert. 19 : 123-132.
  27. Kim, Y. H., A. L Khan, M. Hamayun, S. M. Kang, Y. J. Beom, and I. J. Lee. 2011. Influence of short-term silicon application on endogenous physiohormonal levels of Oryza sativa L. under wounding stress. Biol. Trace Elem. Res. 144 : 1175-1185. https://doi.org/10.1007/s12011-011-9047-4
  28. Kim, Y. H., A. L. Khan, D. H. Kim, S. Y. Lee, K. M. Kim, M. Waqas, H. Y. Jung, J. H. Shin, J. G. Kim, and I. J. Lee. 2014a. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Boil. 14 : 13. https://doi.org/10.1186/1471-2229-14-13
  29. Kim, Y. H., A. L. Khan, M. Waqas, H. J. Jeong, D. H. Kim, J. S. Shin, J. G. Kim, M. H. Yeon, and I. J. Lee. 2014b. Regulation of jasmonic acid biosynthesis by silicon application during physical injury to Oryza sativa L. J. Plant Res. 127 : 525-532. https://doi.org/10.1007/s10265-014-0641-3
  30. Kim, Y. H., A. L. Khan, M. Waqas, J. K. Shim, D. H. Kim, K. Y. Lee, and I. J. Lee. 2014c. Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. J. Plant Growth Regul. 33 : 137-149. https://doi.org/10.1007/s00344-013-9356-2
  31. Kim, Y. H., A. L. Khan, and I. J. Lee. 2015. Silicon: a duo synergy for regulating crop growth and hormonal signaling under abiotic stress conditions, Crit. Rev. Biotechnol. DOI: 10.3109/07388551.2015.1084265.
  32. Lee, I. J., K. R. Foster, and P. W. Morgan. 1998. Photoperiod control of gibberellin levels and flowering in Sorghum. Plant Physiol. 116 : 1003-1011. https://doi.org/10.1104/pp.116.3.1003
  33. Lee, S. K., E. Y. Sohn, M. Hamayun, J. Y. Yoon, and I. J. Lee. 2010. Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforest. Syst. 80 : 333-340. https://doi.org/10.1007/s10457-010-9299-6
  34. Liang, Y. 1999. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209 : 217-224. https://doi.org/10.1023/A:1004526604913
  35. Ma, J. and E. Takahashi. 1989. Effect of silicic acid on phosphorus uptake by rice plant. Soil Sci. Plant Nut. 35 : 227-234. https://doi.org/10.1080/00380768.1989.10434755
  36. Ma, J. F., N. Yamaji, N. Mitani, K. Tamai, S. Konishi, T. Fujiwara, M. Katsuhara, and M. Yano. 2007. An efflux transporter of silicon in rice. Nature 448 : 209-212. https://doi.org/10.1038/nature05964
  37. Mae, T. 1997. Physiological nitrogen efficiency in rice: Nitrogen utilization, photosynthesis, and yield potential. Plant and Soil 196 : 201-210. https://doi.org/10.1023/A:1004293706242
  38. Mihlan, M., V. Homann, T. W. D. Liu, and B. Tudzynski. 2003. AREA directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR. Mol. Microbiol. 47 : 975-991. https://doi.org/10.1046/j.1365-2958.2003.03326.x
  39. Mueller, M. J. and W. Brodschelm. 1994. Quantification of jasmonic acid by capillary gas chromatography-negative chemical ionization-mass spectrometry. Anal. Biochem. 218 : 425-435. https://doi.org/10.1006/abio.1994.1202
  40. Neumann, D. and U. Nieden. 2001. Silicon and heavy metal tolerance of high plants. Phytochem. 56 : 685-692. https://doi.org/10.1016/S0031-9422(00)00472-6
  41. Nishimura, K., Y. Miyaki, and E. Takahashi. 1989. On silicon, aluminium, and zinc accumulators discriminated from 147 species of Angiospermae. Mem. Coll. Agric. Kyoto Univ. 133 : 23-43.
  42. Qi, Q. G., P. A. Rose, G. D. Abrams, D. C. Taylor, S. R. Abrams, and A. J. Cutler. 1998. (+)-Abscisic acid metabolism, 3-ketoacyl-coenzyme A synthase gene expression, and very-long-chain monounsaturated fatty acid biosynthesis in Brassica napus embryos. Plant Physiol. 117 : 979-987. https://doi.org/10.1104/pp.117.3.979
  43. Reddy, A. R., K. V. Chaitanya, and M. Vivekanandan. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161 : 1189-1202. https://doi.org/10.1016/j.jplph.2004.01.013
  44. Schjoerring, J. K., S. Husted, G. Mäck, and M. Mattsson. 2002. The regulation of ammonium translocation in plants. J. Exp. Bot. 53(370) : 883-890. https://doi.org/10.1093/jexbot/53.370.883
  45. Schmelz, E. A., H. T. Alborn, J. Engelberth, and J. H. Tumlinson. 2003. Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize. Plant Physiol. 133 : 295-306. https://doi.org/10.1104/pp.103.024174
  46. Shaul, O. 2002. Magnesium transport and function in plants: the tip of the iceberg. Biometals 15 : 307-321. https://doi.org/10.1023/A:1016091118585
  47. Takahashi, K., K. Fujino, Y. Kikuta, and Y. Koda. 1994. Expansion of potato cells in response to jasmonic acid. Plant Sci. 100 : 3-8. https://doi.org/10.1016/0168-9452(94)90127-9
  48. Ueda, J., K. Miyamoto, and M. Aoki. 1995. Jasmonic acid inhibits the IAA-induced elongation of oat coleptile segment : A possible mechanism involving the mechanism of cell wall polysaccharides. Plant Cell Physiol. 35 : 357-359.
  49. White, P. J. and M. R. Broadley. 2003. Calcium in plants. Ann. Bot. 92 : 487-511. https://doi.org/10.1093/aob/mcg164
  50. Xi, J., Y. Qiu, L. Du, and B. W. Poovaiah. 2012. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses. Plant Sci. 185 : 274-280.
  51. Yamaguchi, S. 2008. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59 : 225-251. https://doi.org/10.1146/annurev.arplant.59.032607.092804
  52. Yamaji, N., Y. Chiba, N. Mitani-Ueno, and J. F. Ma. 2012. Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiol. 160(3) : 1491-1497. https://doi.org/10.1104/pp.112.204578
  53. Yoshida, S., Y. Ohnishi, and K. Kitagishi. 1959. Role of siucon in rice nutrition. Soil Sci. Plant Nut. 5(3) : 127-133. https://doi.org/10.1080/00380768.1959.10430905