References
- Antonious, G.F., M.B. Bomford and P. Vincelli. 2009. Screening Brassica species for glucosinolate content. J. Environ. Sci. Heal. B. 44:311-316. https://doi.org/10.1080/03601230902728476
- Barillari, J., R. Cervellati, M. Paolini, A. Tatibouët, P. Rollin and R. Lori. 2005. Isolation of 4-methylthio-3-butenyl glucosinolate from Raphanus sativus sprouts (kaiware daikon) and its redox properties. J. Agric. Food Chem. 53:9890-9896. https://doi.org/10.1021/jf051465h
- Bellostas, N., J.C. Sorenseon and H. Sorenseon. 2004. Qualitative and quantitative evaluation of glucosinolates in cruciferous plants during their life cycle. Agroindustria 3:5-10.
- Bhandari, S.R., J.S. Jo and J.G. Lee. 2015. Comparison of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 20:15827-15841. https://doi.org/10.3390/molecules200915827
- Bradshaw, J.E., R.K. Heany, W.H. Macfarlane Smith, S. Gowers, D.J. Gemmell and G.R. Fenwick. 1984. The glucosinolate content of some fodder Brassicas. J. Sci. Food Agr. 35:977-981. https://doi.org/10.1002/jsfa.2740350905
- Carlson, D.G., M.E. Daxenbichler and C.H. Van Etten. 1985. Glucosinolate in radish cultivars. J. Amer. Soc. Hort. Sci. 110:634-638.
- Cartea, M.E., P. Velasco, S. Obregon, G. Padilla and A. de Haro. 2008. Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry 69:403-410. https://doi.org/10.1016/j.phytochem.2007.08.014
- Cartea, M.E., A. de Haro, S. Obregon, P. Soengas and P. Velasco. 2012. Glucosinolate variation in leaves of Brassica rapa crops. Plant Foods Hum. Nutr. 67:283-288. https://doi.org/10.1007/s11130-012-0300-6
- Castro, A., A. Aries, E. Rosa, E. Bloem, I. Stulen and L.J.D. Kok. 2004. Distribution of glucosinoaltes in Brassica oleracea cultivars. Phyton 44:133-143.
- Choi, S.J., A.R. Choi, E.H. Cho, S.Y. Kim, G.S. Lee, S.S. Lee and H.J. Chae. 2009. The glucosinolate and sulforaphane contents of land race radish and wild race radish extracts and their inhibitory effects on cancer cell line. J. East Asian Dietary Life 19:558-563 (in Korean).
- Ciska, E., B. Martyniak-Przybyszewska and H. Kozlowska. 2000. Content of glucosinolates in cruciferous vegetables grown at the same site for two years under different climatic conditions. J. Agric. Food Chem. 48:2862-2867. https://doi.org/10.1021/jf981373a
- Crisp, P. 1995. Radish, Raphanus sativus (Cruciferae). In Smartt, J. and N.W. Simmonds (eds.), Evolution of crop plants, 2nd Edition, Longman Scientific & Technical, UK. pp. 86-89.
- Fahey, J.W., A.T. Zalcmann and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5-51. https://doi.org/10.1016/S0031-9422(00)00316-2
- Farnham, M.W., P.E. Wilson, K.K. Stephenson and J.W. Fahey. 2004. Genetic and environmental effects on glucosinolate content and chemoprotective potency of broccoli. Plant Breed. 123:60-65. https://doi.org/10.1046/j.0179-9541.2003.00912.x
- Gutierrez, R.M.P. and R.L. Perez. 2004. Raphanus sativus (Radish): Their Chemistry and Biology. Sci. World J. 4: 811-837. https://doi.org/10.1100/tsw.2004.131
- Han, N.R., M. Suudi and J.K. Kim. 2015. The major aliphatic glucosinolate content in Korean radish during vegetative and reproductive growth. Hort. Enviorn. Biotechnol. 56: 152-158 (in Korean). https://doi.org/10.1007/s13580-015-0100-7
- Han, Q., H. Higashi, Y. Mitsui and H. Setoguchi. 2015. Distinct phylogeographic structures of wild radish (Raphanus sativus L. var. raphanistroides Makino) in Japan. PLoS ONE 10(8): e0135132.doi:10.1371/journal.pone.0135132.
- Hong, E. and G.H. Kim. 2014. Variation of glucosinolate composition during seedling and growth stages of Brassica rapa L. ssp. pekinensis. Kor. J. Hort. Sci. Technol. 32: 730-738 (in Korean).
- Ishida, M., M. Nagata, T. Ohara, T. Kakizaki, K. Hatakeyama and T. Nishio. 2012. Small variation of glucosinolate composition in Japanese cultivars of radish (Raphanus sativus L.) requires simple quantitative analysis for breeding of glucosinolate component. Breeding Sci. 62:63-70. https://doi.org/10.1270/jsbbs.62.63
- Ishii, G., R. Saijo and M. Nagata. 1989. The difference of glucosinolates content in different cultivar of daikon root (Raphanus sativus L.). J. Jpn. Soc. Food. Sci. 36:739-742. https://doi.org/10.3136/nskkk1962.36.9_739
- Jakubikova, J., D. Cervi, M. Ooi, K. Kim, S. Nahar and S. Klippel. 2011. Anti-tumor activity and signaling events triggered by the isothiocyanates, sulforaphane and phenethylisothiocyanate in multiple myeloma. Haematologica 96:1170-1179. https://doi.org/10.3324/haematol.2010.029363
- Jo, J.S., S.R. Bhandari, G.H. Kang and J.G. Lee. 2016. Comparative analysis of individual glucosinolates, phytochemicals and antioxidant activities in broccoli breeding lines. Hort. Environ. Biotechnol. 57:392-403 (in Korean). https://doi.org/10.1007/s13580-016-0088-7
- Kabouw, P., A. Biere, W.H. van der Putten and N.M. van Dam. 2010. Intra-specific differences in root and shoot glucosinolate profiles among white cabbage (Brassica oleracea var. capitate) cultivars. J. Agric. Food Chem. 58:411-417. https://doi.org/10.1021/jf902835k
- Kim, J.K., S.M. Chu, S.J. Kim, D.J. Lee, S.Y. Lee, S.H. Lim, S.H. Ha, S.J. Kweon and H.S. Cho. 2010. Variation of glucosinolates in vegetable crops of Brassica rapa L. ssp. pekinensis. Food Chem. 119:423-428. https://doi.org/10.1016/j.foodchem.2009.08.051
- Kim, J.K., T. Bamba, K. Harada, E. Fukusaki and A. Kobayashi. 2007. Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment. J. Exp. Bot. 58: 415-424. https://doi.org/10.1093/jxb/erl216
- Kim, S.J., M.R. Uddin and S.U. Park. 2013. Glucosinolate accumulation in three important radish (Raphanus sativus L.) cultivars. Aus. J. Crop Sci. 7:1843-1847.
- Kwon, S.T. and D.J. Kliebenstein. 2014. Response to turnip to Botrytis cinerea infection and their relationship with glucosinolate profiles. Korean J. Plant Res. 27(4):371-379 (in Korean). https://doi.org/10.7732/kjpr.2014.27.4.371
- Lee, J.G., G. Bonnema, N. Zhang, J.H. Kwak, R.C. de Vos and J. Beekwilder. 2013. Evaluation of glucosinolate variation in a collection of turnip (Brassica rapa L.) germplasm by the analysis of intact and desulfo glucosinolates. J. Agric. Food Chem. 61:3984-3993. https://doi.org/10.1021/jf400890p
- Li, S. 1989. The origin and resources of vegetable crops in China. International Symposium on Horticultural Germplasm, Cultivated and Wild, Beijing, China, September. 1988. Chinese Society for Horticultural Science, International Academic Publishers, Beijing, China. pp. 197-202.
- Li, Z., H. Hong-ju, C. Jing-hua and Z. Xue-zhi. 2010. Glucosinolate composition and content analysis of different radish (Raphanus sativus L.) varieties. China Vegetables 18:43-46.
- Malik, M.S., M.B. Riley, J.K. Norworthy and W.B. Jr. 2010. Variation of glucosinolates in wild radish (Raphanus raphanistrum) accessions. J. Agric. Food Chem. 58:11626-11632. https://doi.org/10.1021/jf102809b
- Mithen, R.F., M. Dekker, R. Verkerk, S. Rabot and L.T. Johnson. 2000. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J. Sci. Food Agric. 80:967-984. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<967::AID-JSFA597>3.0.CO;2-V
- Montaut, S., J. Barillari, R. Iori and P. Rollin. 2010. Glucoraphasatin: Chemistry, occurrence and biological properties. Phytochemistry 71:6-12. https://doi.org/10.1016/j.phytochem.2009.09.021
- Padilla, G., M.E. Cartea, P. Velasco, A. de Haro and A. Ordas. 2007. Variation of glucosinolates in vegetable crops of Brassica rapa. Phytochemistry 68:536-545. https://doi.org/10.1016/j.phytochem.2006.11.017
- Rosa, E.A.S., R.K. Heaney, G.R. Fenwick and C.A.M. Portas. 1997. Glucosinolates in crop plants. Hortic. Rev. 19:99-125.
- Rosa, E. A. S. 1999. Chemical composition. In Gomez-Campo, C. (ed.), Biology of Brassica Coenospecies, Elsevier Science B.V., Amsterdam, the Netherlands. pp. 315-357.
- Sang, J.P., I.R. Minchinton, P.K. Johnstone and R.J.W. Truscott. 1984. Glucosinolate profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and swede. Can. J. Plant Sci. 64:77-93. https://doi.org/10.4141/cjps84-011
- Schippers, R.R. 2004. Raphanus sativus L. Record from Protabase. In Grubben G.J.H. and O.A. Denton (eds.), Plant Resources of Tropical Africa, Wageningen, the Netherlands. http://database.prota.org/search.htm.
- Tang, L., Y. Zhang, H.E. Jobson, J. Li, K.K. Stephenson, K.L. Wade and J.W. Fahey. 2006. Potent activation of mitochondria-mediated apoptosis and arrest in S and M phase of cancer cells by a broccoli sprout extract. Mol. Cancer Ther. 5:935-944. https://doi.org/10.1158/1535-7163.MCT-05-0476
- Van Dam, N.M., T.O.G. Tytgat and J.A. Kirkegaard. 2009. Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem. Rev. 8:171-186. https://doi.org/10.1007/s11101-008-9101-9
- Yang, S.R. and H.O. Boo. 2015. Antioxidant activity of several cabbage (Brassica oleracea L.) cultivars. Korean J. Plant Res. 28(3):312-320 (in Korean). https://doi.org/10.7732/kjpr.2015.28.3.312
- Yi, G., S. Lim, W.B. Chae, J.E. Park, H.R. Park, E.J. Lee and J.H. Huh. 2016. Root glucosinolate profiles for screening of radish (Raphanus sativus L.) genetic resources. J. Agric. Food Chem. 64:61-70. https://doi.org/10.1021/acs.jafc.5b04575
- Zhu, B., J. Yang and Z.J. Zhu. 2013. Variation in glucosinolates in pakchoi cultivars and various organs at different stages of vegetative growth during the harvest period. J. Zhejiang Univ. Sci. 14:309-317. https://doi.org/10.1631/jzus.B1200213
Cited by
- 간척지 토양에서 양액의 전기전도도가 비트 및 순무의 생장에 미치는 영향 vol.37, pp.3, 2018, https://doi.org/10.5338/kjea.2018.37.3.25
- 무 유전자원 82 계통의 유리당 함량 분석 vol.31, pp.5, 2017, https://doi.org/10.7732/kjpr.2018.31.5.453
- Induction of Glucoraphasatin Biosynthesis Genes by MYB29 in Radish ( Raphanus sativus L.) Roots vol.21, pp.16, 2017, https://doi.org/10.3390/ijms21165721
- Induction of Glucoraphasatin Biosynthesis Genes by MYB29 in Radish ( Raphanus sativus L.) Roots vol.21, pp.16, 2017, https://doi.org/10.3390/ijms21165721