DOI QR코드

DOI QR Code

Production and Characterization of Keratinolytic Proteases by a Chicken Feather-Degrading Thermophilic Strain, Thermoactinomyces sp. YT06

  • Wang, Lin (Circular Agriculture Research Center, Jiangsu Academy of Agricultural Sciences) ;
  • Qian, Yuting (Circular Agriculture Research Center, Jiangsu Academy of Agricultural Sciences) ;
  • Cao, Yun (Circular Agriculture Research Center, Jiangsu Academy of Agricultural Sciences) ;
  • Huang, Ying (Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area) ;
  • Chang, Zhizhou (Circular Agriculture Research Center, Jiangsu Academy of Agricultural Sciences) ;
  • Huang, Hongying (Circular Agriculture Research Center, Jiangsu Academy of Agricultural Sciences)
  • Received : 2017.05.31
  • Accepted : 2017.09.21
  • Published : 2017.12.28

Abstract

Thermoactinomyces sp. strain YT06 was isolated from poultry compost and observed to degrade integral chicken feathers completely at $60^{\circ}C$, resulting in the formation of 3.24 mg/ml of free amino acids from 50 ml of culture containing 10 g/l chicken feathers. Strain YT06 could grow and secrete keratinase using feather as the only carbon and nitrogen sources without other supplement, but complementation of 10 g/l sucrose and 4 g/l $NaNO_3$ increased the production of the keratinolytic enzyme. The maximum protease activity obtained was 110 U/ml and for keratinase was 42 U/ml. The keratinase maintained active status over a broad pH (pH 8-11) and temperature ($60-75^{\circ}C$). It was inhibited by serine protease inhibitors and most metal ions; however, it could be stimulated by $Mn^{2+}$ and the surfactant Tween-20. A reductive agent (${\beta}$-mercaptoethanol) was observed to cleave the disulfide bond of keratin and improve the access of the enzyme to the keratinaceous substrate. Zymogram analysis showed that strain YT06 primarily secreted keratinase with a molecular mass of approximately 35 kDa. The active band was assessed by MALDI-TOF mass spectrometry and was observed to be completely identical to an alkaline serine protease from Thermoactinomyces sp. Gus2-1. Thermoactinomyces sp. strain YT06 shows great potential as a novel candidate in enzymatic processing of hard-to-degrade proteins into high-value products, such as keratinous wastes.

Keywords

References

  1. Lange L, Huang Y, Busk PK. 2016. Microbial decomposition of keratin in nature - a new h ypothesis of industrial relevance. Appl. Microbiol. Biotechnol. 100: 2083-2096. https://doi.org/10.1007/s00253-015-7262-1
  2. Mckittrick J, Chen PY, Bodde SG, Yang W, Novitskaya EE, Meyer MA. 2012. The structure, functions, and mechanical properties of keratin. JOM 64: 449-468. https://doi.org/10.1007/s11837-012-0302-8
  3. Wang L, Cheng G, Ren Y, Dai Z, Zhao ZS, Liu F, et al. 2015. Degradation of intact chicken feathers by Thermoactinomyces sp. CDF and characterization of its keratinolytic protease. Appl. Microbiol. Biotechnol. 99: 3949-3959. https://doi.org/10.1007/s00253-014-6207-4
  4. Gradisar H, Friedrich J, Krizaj I, Jerala R. 2005. Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl. Environ. Microbiol. 71: 3420-3426. https://doi.org/10.1128/AEM.71.7.3420-3426.2005
  5. Huang Y, Busk PK, Lange L. 2015. Production and characterization of keratinolytic proteases produced by Onygena corvina. Fungal Genom. Biol. 5: 119.
  6. Matsui T, Yamada Y, Mitsuya H, Shigeri Y, Yoshida Y, Saito Y, et al. 2009. Sustainable and practical degradation of intact chicken feathers by cultivating a newly isolated thermophilic Meiothermus ruber H328. Appl. Microbiol. Biotechnol. 82: 941-950. https://doi.org/10.1007/s00253-009-1880-4
  7. Riffel A, Daroit DJ, Brandelli A. 2011. Nutritional regulation of protease production by the feather-degrading bacterium Chryseobacterium sp. kr6. New Biotechnol. 28: 153-157. https://doi.org/10.1016/j.nbt.2010.09.008
  8. Fellahi S, Chibani A, Feuk-Lagerstedt E, Taherzadeh MJ. 2016. Identification of two new keratinolytic proteases from a Bacillus pumilus strain using protein analysis and gene sequencing. AMB Express 6: 1-8. https://doi.org/10.1186/s13568-015-0169-5
  9. Abdel-Naby MA, Ibrahim MH, El-Refai HA. 2016. Catalytic, kinetic and thermodynamic properties of Bacillus pumilus FH9 keratinase conjugated with activated pectin. Int. J. Biol. Macromol. 85: 238-245. https://doi.org/10.1016/j.ijbiomac.2015.12.078
  10. Kunert DJ. 2010. Biochemical mechanism of keratin degradation by the actinomycete Streptomyces fradiae and the fungus Microsporum gypseum: a comparison. J. Basic Microbiol. 29: 597-604.
  11. Blyskal B. 2009. Fungi utilizing keratinous substrates. Int. Biodeterior. Biodegradation 63: 631-653. https://doi.org/10.1016/j.ibiod.2009.02.006
  12. Gupta R, Sharma R, Beg QK. 2013. Revisiting microbial keratinases: next generation proteases for sustainable biotechnology. Crit. Rev. Biotechnol. 33: 216-228. https://doi.org/10.3109/07388551.2012.685051
  13. Kornillowicz-Kowalska T, Bohacz J. 2011. Biodegradation of keratin waste: theory and practical aspects. Waste Manag. 31: 1689-1701. https://doi.org/10.1016/j.wasman.2011.03.024
  14. Brandelli A, Daroit DJ, Riffel A. 2010. Biochemical features of microbial keratinases and their production and applications. Appl. Microbiol. Biotechnol. 85: 1735-1750. https://doi.org/10.1007/s00253-009-2398-5
  15. Petrova DH, Shishkov SA, Vlahov SS. 2006. Novel thermostable serine collagenase from Thermoactinomyces sp. 21E: purification and some properties. J. Basic Microbiol. 46: 275-285. https://doi.org/10.1002/jobm.200510063
  16. Zabolotskaya MV, Demidyuk IV, Akimkina TV, Kostrov SV. 2004. A novel neutral protease from Thermoactinomyces species 27a: sequencing of the gene, purification, and characterization of the enzyme. Protein J. 23: 483-492. https://doi.org/10.1007/s10930-004-5225-y
  17. Verma A, Singh H, Anwar MS, Kumar S, Ansari MW, Agrawal S. 2016. Production of thermostable organic solvent tolerant keratinolytic protease from Thermoactinomyces sp. RM4: IAA production and plant growth promotion. Front. Microbiol. 7: 1189.
  18. Sambrook J, Russell DW. 2016. Molecular Cloning: A Laboratory Manual, pp. 895-909. 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  19. Fang Z, Zhang J, Liu B, Jiang L, Du G, Chen J. 2014. Cloning, heterologous expression and characterization of two keratinases from Stenotrophomonas maltophilia BBE11-1. Process Biochem. 49: 647-654. https://doi.org/10.1016/j.procbio.2014.01.009
  20. Gatti R, Gioia MG, Andreatta P, Pentassuglia G. 2004. HPLC-fluorescence determination of amino acids in pharmaceuticals after pre-column derivatization with phanquinone. J. Pharm. Biomed. Anal. 35: 339-348. https://doi.org/10.1016/S0731-7085(03)00584-3
  21. Liang X, Bian Y, Tang XF, Xiao G, Tang B. 2010. Enhancement of keratinolytic activity of a thermophilic subtilase by improving its autolysis resistance and thermostability under reducing conditions. Appl. Microbiol. Biotechnol. 87: 999-1006. https://doi.org/10.1007/s00253-010-2534-2
  22. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  23. Jaouadi B, Ellouz-Chaabouni S, Rhimi M, Bejar S. 2008. Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie 90: 1291-1305. https://doi.org/10.1016/j.biochi.2008.03.004
  24. Gupta R , Ramnani P. 2006. Microbial keratinases and their prospective applications: an overview. Appl. Microbiol. Biotechnol. 70: 21-33. https://doi.org/10.1007/s00253-005-0239-8
  25. Kumar R, Balaji S, Uma TS, Mandal AB, Sehgal PK. 2010. Optimization of influential parameters for extracellular keratinase production by Bacillus subtilis (MTCC9102) in solid state fermentation using horn meal - a biowaste management. Appl. Biochem. Biotechnol. 160: 30-39. https://doi.org/10.1007/s12010-008-8452-4
  26. Ramnani P, Gupta R. 2004. Optimization of medium composition for keratinase production on feather by Bacillus licheniformis RG1 using statistical methods involving response surface methodology. Biotechnol. Appl. Biochem. 40: 191-196. https://doi.org/10.1042/BA20030228
  27. Gioppo NMD, Moreira-Gasparin FG, Costa AM, Alexandrino AM, de Souza CG, Peralta RM. 2009. Influence of the carbon and nitrogen sources on keratinase production by Myrothecium verrucaria in submerged and solid state cultures. J. Ind. Microbiol. Biotechnol. 36: 705-711. https://doi.org/10.1007/s10295-009-0540-0
  28. Anbu P, Gopinath S, Hilda A, Lakshmipriya TG. 2007. Optimization of extracellular keratinase production by poultry farm isolate Scopulariopsis brevicaulis. Bioresour. Technol. 98: 1298-1303. https://doi.org/10.1016/j.biortech.2006.05.047
  29. Elbondkly AM. 2010. Keratinolytic activity from new recombinant fusant AYA2000, derived from endophytic Micromonospora strains. Can. J. Microbiol. 56: 748-760. https://doi.org/10.1139/W10-058
  30. Friedrich AB, Antranikian G. 1996. Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. Appl. Environ. Microbiol. 62: 2875-2882.
  31. Liang JD, Han YF, Zhang JW, Du W, Liang ZQ, Li ZZ. 2011. Optimal culture conditions for keratinase production by a novel thermophilic Myceliophthora thermophila strain GZUIFR-H49-1. J. Appl. Microbiol. 110: 871-880. https://doi.org/10.1111/j.1365-2672.2011.04949.x
  32. Wang B, Yang W, Mckittrick J, Meyers MA. 2016. Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog. Mater. Sci. 76: 229-318. https://doi.org/10.1016/j.pmatsci.2015.06.001
  33. Nam GW, Lee DW, Lee HS, Lee NJ, Kim BC, Choe EA, et al. 2003. Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch. Microbiol. 178: 538-547.
  34. Kublanov IV, Tsirul'Nikov KB, Kaliberda EN, Rumsh LD, Haertle T, Bonchosmolovskaia EA. 2009. Keratinase of an anaerobic thermophilic bacterium Thermoanaerobacter sp. strain 1004-09 isolated from a hot spring in the Baikal Rift zone. Microbiology 78: 79-88.
  35. Riessen S, Antranikian G. 2001. Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity. Extremophiles 5: 399-408. https://doi.org/10.1007/s007920100209
  36. Habbeche A, Saoudi B, Jaouadi B, Haberra S, Kerouaz B, Boudelaa M, et al. 2014. Purification and biochemical characterization of a detergent-stable keratinase from a newly thermophilic actinomycete Actinomadura keratinilytica strain Cpt29 isolated from poultry compost. J. Biosci. Bioeng. 117: 413-421. https://doi.org/10.1016/j.jbiosc.2013.09.006
  37. Prakash P, Jayalakshmi SK, Sreeramulu K. 2010. Purification and characterization of extreme alkaline, thermostable keratinase, and keratin disulfide reductase produced by Bacillus halodurans PPKS-2. Appl. Microbiol. Biotechnol. 87: 625-633. https://doi.org/10.1007/s00253-010-2499-1

Cited by

  1. Multidisciplinary involvement and potential of thermophiles vol.64, pp.3, 2017, https://doi.org/10.1007/s12223-018-0662-8
  2. KERATINOLYTIC ENZYMES: PRODUCERS, PHYSICAL AND CHEMICAL PROPERTIES. APPLICATION FOR BIOTECHNOLOGY vol.12, pp.2, 2019, https://doi.org/10.15407/biotech12.02.027
  3. Complete Genome Sequence and Methylome Analysis of Thermoactinomyces vulgaris 2H vol.8, pp.32, 2019, https://doi.org/10.1128/mra.00657-19
  4. Challenges and Opportunities in Identifying and Characterising Keratinases for Value-Added Peptide Production vol.10, pp.2, 2017, https://doi.org/10.3390/catal10020184
  5. Bacillus cytotoxicus Isolated from a Pristine Natural Geothermal Area Reveals High Keratinolytic Activity vol.8, pp.6, 2020, https://doi.org/10.3390/microorganisms8060796
  6. Microbial enzymes catalyzing keratin degradation: Classification, structure, function vol.44, pp.None, 2017, https://doi.org/10.1016/j.biotechadv.2020.107607
  7. Keratinases as Versatile Enzymatic Tools for Sustainable Development vol.11, pp.12, 2017, https://doi.org/10.3390/biom11121900