DOI QR코드

DOI QR Code

Characterization of ATPase Activity of Free and Immobilized Chromatophore Membrane Vesicles of Rhodobacter sphaeroides

  • Received : 2017.09.01
  • Accepted : 2017.10.10
  • Published : 2017.12.28

Abstract

The intracytoplasmic membrane of Rhodobacter sphaeroides readily vesiculates when cells are lysed. The resulting chromatophore membrane vesicle (CMV) contains the photosynthetic machineries to synthesize ATP by ATPase. The light-dependent ATPase activity of CMV was lowered in the presence of $O_2$, but the activity increased to the level observed under anaerobic condition when the reaction mixture was supplemented with ascorbic acid (${\geq}0.5mM$). Cell lysis in the presence of biotinyl cap phospholipid (bcp) resulted in the incorporation of bcp into the membrane to form biotinylated CMV (bCMV), which binds to streptavidin resin at a ratio of approximately $24{\mu}g$ bacteriochlorophyll a/ml resin. The ATPase activity of CMV was not affected by biotinylation, but approximately 30% of the activity was lost by immobilization to resin. Interestingly, the remaining 70% of ATPase activity stayed constant during 7-day storage at $4^{\circ}C$. On the contrary, the ATPase activity of bCMV without immobilization gradually decreased to approximately 40% of the initial level in the same comparison. Thus, the ATPase activity of CMV is sustainable after immobilization, and the immobilized bCMV can be used repeatedly as an ATP generator.

Keywords

References

  1. Bryant DA, Frigaard N-U. 2006. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol. 14: 488-496. https://doi.org/10.1016/j.tim.2006.09.001
  2. Jackson PJ, Lewis HJ, Tucker JD, Hunter CN, Dickman MJ. 2012. Quantitative proteomic analysis of intracytoplasmic membrane development in Rhodobacter sphaeroides. Mol. Microbiol. 84: 1062-1078. https://doi.org/10.1111/j.1365-2958.2012.08074.x
  3. Zeng X, Roh JH, Callister SJ, Tavano CL, Donohue TJ, Lipton MS, et al. 2007. Proteomic characterization of the Rhodobacter sphaeroides 2.4.1 photosynthetic membrane: identification of new proteins. J. Bacteriol. 189: 7464-7474. https://doi.org/10.1128/JB.00946-07
  4. Drews G, Oelze J. 1981. Organization and differentiation of membranes of phototrophic bacteria. Adv. Microb. Physiol. 22: 1-92.
  5. Okuno D, Iino R, Noji H. 2011. Rotation and structure of $F_oF_1-ATP$ synthase. J. Biochem. 149: 655-664. https://doi.org/10.1093/jb/mvr049
  6. Gubellini F, Francia F, Turina P, Levy D, Venturoli G, Melandri BA. 2007. Heterogeneity of photosynthetic membranes from Rhodobacter capsulatus: size dispersion and ATP synthase distribution. Biochim. Biophys. Acta 1767: 1340-1352. https://doi.org/10.1016/j.bbabio.2007.08.007
  7. Michels PA, Konings WN. 1978. The electrochemical proton gradient generated by light in membrane vesicles and chromatophores from Rhodopseudomonas sphaeroides. Eur. J. Biochem. 85: 147-155. https://doi.org/10.1111/j.1432-1033.1978.tb12222.x
  8. Hellingwerf KJ, Michels PA, Dorpema JW, Konings WN. 1975. Transport of amino acids in membrane vesicles of Rhodopseudomonas spheroides energized by respiratory and cyclic electron flow. Eur. J. Biochem. 55: 397-406. https://doi.org/10.1111/j.1432-1033.1975.tb02175.x
  9. Nisha S, Arun KS, Gobi N. 2012. A review on methods, application and properties of immobilized enzyme. Chem. Sci. Rev. Lett. 1: 148-155.
  10. Datta S, Christena LR, Rajaram YRS. 2013. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3: 1-9.
  11. Guisan JM. 2006. Immobilization of Enzymes and Cells, pp. 15-30. 2nd Ed. Humana Press, Totowa, NJ.
  12. Cohen-Bazire G, Sistrom WR, Stanier RY. 1957. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J. Cell. Comp. Physiol. 49: 25-68. https://doi.org/10.1002/jcp.1030490104
  13. Sistrom WR. 1960. A requirement for sodium in the growth of Rhodopseudomonas spheroides. J. Gen. Microbiol. 22: 778-785. https://doi.org/10.1099/00221287-22-3-778
  14. Sistrom WR. 1962. Observations on the relationship between the formation of photopigments and the synthesis of protein in Rhodopseudomonas spheroides. J. Gen. Microbiol. 28: 599-605. https://doi.org/10.1099/00221287-28-4-599
  15. Fraley RT, Lueking DR, Kaplan S. 1978. Intracytoplasmic membrane synthesis in synchronous cell populations of Rhodopseudomonas sphaeroides. Polypeptide insertion into growing membrane. J. Biol. Chem. 253: 458-464.
  16. Tanaka K, Kakuno T, Yamashita J, Horio T. 1982. Purification and properties of chlorophyllase from greened rye seedlings. J. Biochem. 92: 1763-1773. https://doi.org/10.1093/oxfordjournals.jbchem.a134106
  17. Meinhardt SW, Kiley PJ, Kaplan S, Crofts AR, Harayama S. 1985. Characterization of light-harvesting mutants of Rhodopseudomonas sphaeroides. I. Measurement of the efficiency of energy transfer from light-harvesting complexes to the reaction center. Arch. Biochem. Biophys. 236: 130-139. https://doi.org/10.1016/0003-9861(85)90612-5
  18. Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR. 1989. Structural origins of high-affinity biotin binding to streptavidin. Science 243: 85-88. https://doi.org/10.1126/science.2911722
  19. Cartron ML, Olsen JD, Sener M, Jackson PJ, Brindley AA, Qian P, et al. 2014. Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides. Biochim. Biophys. Acta 1837: 1769-1780. https://doi.org/10.1016/j.bbabio.2014.02.003
  20. Etzold C, Deckers-Hebestreit G, Altendorf K. 1997. Turnover number of Escherichia coli $F_oF_1$ ATP synthase for ATP synthesis in membrane vesicles. Eur. J. Biochem. 243: 336-343. https://doi.org/10.1111/j.1432-1033.1997.0336a.x
  21. Berghoff BA, Glaeser J, Nuss AM, Zobawa M, Lottspeich F, Klug G. 2011. Anoxygenic photosynthesis and photooxidative stress: a particular challenge for Roseobacter. Environ. Microbiol. 13: 775-791. https://doi.org/10.1111/j.1462-2920.2010.02381.x
  22. Nandi A, Chatterjee IB. 1987. Scavenging of superoxide radical by ascorbic acid. J. Biosci. 11: 435-441. https://doi.org/10.1007/BF02704692
  23. Castro ML, Carson GM, McConnell MJ, Herst PM. 2017. High dose ascorbate causes both genotoxic and metabolic stress in glioma cells. Antioxidants 6: 58. https://doi.org/10.3390/antiox6030058
  24. Dzeja PP, Zeleznikar RJ, Goldberg ND. 1998. Adenylate kinase: kinetic behavior in intact cells indicates it is integral to multiple cellular processes. Mol. Cell. Biochem. 184: 169-182. https://doi.org/10.1023/A:1006859632730
  25. Valentine WN, Paglia DE, Nakatani M, Brockway RA. 1989. Inhibition of adenylate kinase by P1,P5-di(adenosine 5') pentaphosphate in assays of erythrocyte enzyme activities requiring adenine nucleotides. Am. J. Hematol. 32: 143-145. https://doi.org/10.1002/ajh.2830320213
  26. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40: 1451-1463. https://doi.org/10.1016/j.enzmictec.2007.01.018
  27. Martinek K, Klibanov AM, Goldmacher VS, Berezin IV. 1977. The principles of enzyme stabilization. I. Increase in thermostability of enzymes covalently bound to a complementary surface of a polymer support in a multipoint fashion. Biochim. Biophys. Acta 485: 1-12. https://doi.org/10.1016/0005-2744(77)90188-7
  28. Klibanov AM. 1979. Enzyme stabilization by immobilization. Anal. Biochem. 93: 1-25. https://doi.org/10.1016/S0003-2697(79)80110-4
  29. Klibanov AM, Kaplan NO, Kamen MD. 1978. A rationale for stabilization of oxygen-labile enzymes: application to a clostridial hydrogenase. Proc. Natl. Acad. Sci. USA 75: 3640-3643. https://doi.org/10.1073/pnas.75.8.3640
  30. Yoshida H, Hara KY, Kiriyama K, Nakayama H, Okazaki F, Matsuda F, et al. 2011. Enzymatic glutathione production using metabolically engineered Saccharomyces cerevisiae as a whole-cell biocatalyst. Appl. Microbiol. Biotechnol. 91: 1001-1006. https://doi.org/10.1007/s00253-011-3196-4
  31. Hara KY, Shimodate N, Hirokawa Y, Ito M, Baba T, Mori H, et al. 2009. Glutathione production by efficient ATP-regenerating Escherichia coli mutants. FEMS Microbiol. Lett. 297: 217-224. https://doi.org/10.1111/j.1574-6968.2009.01682.x
  32. Hara KY, Mori H. 2006. An efficient method for quantitative determination of cellular ATP synthetic activity. J. Biomol. Screen. 11: 310-317. https://doi.org/10.1177/1087057105285112

Cited by

  1. Chromatophores efficiently promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment artificial cells vol.118, pp.7, 2017, https://doi.org/10.1073/pnas.2012170118