References
- Bryant DA, Frigaard N-U. 2006. Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol. 14: 488-496. https://doi.org/10.1016/j.tim.2006.09.001
- Jackson PJ, Lewis HJ, Tucker JD, Hunter CN, Dickman MJ. 2012. Quantitative proteomic analysis of intracytoplasmic membrane development in Rhodobacter sphaeroides. Mol. Microbiol. 84: 1062-1078. https://doi.org/10.1111/j.1365-2958.2012.08074.x
- Zeng X, Roh JH, Callister SJ, Tavano CL, Donohue TJ, Lipton MS, et al. 2007. Proteomic characterization of the Rhodobacter sphaeroides 2.4.1 photosynthetic membrane: identification of new proteins. J. Bacteriol. 189: 7464-7474. https://doi.org/10.1128/JB.00946-07
- Drews G, Oelze J. 1981. Organization and differentiation of membranes of phototrophic bacteria. Adv. Microb. Physiol. 22: 1-92.
-
Okuno D, Iino R, Noji H. 2011. Rotation and structure of
$F_oF_1-ATP$ synthase. J. Biochem. 149: 655-664. https://doi.org/10.1093/jb/mvr049 - Gubellini F, Francia F, Turina P, Levy D, Venturoli G, Melandri BA. 2007. Heterogeneity of photosynthetic membranes from Rhodobacter capsulatus: size dispersion and ATP synthase distribution. Biochim. Biophys. Acta 1767: 1340-1352. https://doi.org/10.1016/j.bbabio.2007.08.007
- Michels PA, Konings WN. 1978. The electrochemical proton gradient generated by light in membrane vesicles and chromatophores from Rhodopseudomonas sphaeroides. Eur. J. Biochem. 85: 147-155. https://doi.org/10.1111/j.1432-1033.1978.tb12222.x
- Hellingwerf KJ, Michels PA, Dorpema JW, Konings WN. 1975. Transport of amino acids in membrane vesicles of Rhodopseudomonas spheroides energized by respiratory and cyclic electron flow. Eur. J. Biochem. 55: 397-406. https://doi.org/10.1111/j.1432-1033.1975.tb02175.x
- Nisha S, Arun KS, Gobi N. 2012. A review on methods, application and properties of immobilized enzyme. Chem. Sci. Rev. Lett. 1: 148-155.
- Datta S, Christena LR, Rajaram YRS. 2013. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3: 1-9.
- Guisan JM. 2006. Immobilization of Enzymes and Cells, pp. 15-30. 2nd Ed. Humana Press, Totowa, NJ.
- Cohen-Bazire G, Sistrom WR, Stanier RY. 1957. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J. Cell. Comp. Physiol. 49: 25-68. https://doi.org/10.1002/jcp.1030490104
- Sistrom WR. 1960. A requirement for sodium in the growth of Rhodopseudomonas spheroides. J. Gen. Microbiol. 22: 778-785. https://doi.org/10.1099/00221287-22-3-778
- Sistrom WR. 1962. Observations on the relationship between the formation of photopigments and the synthesis of protein in Rhodopseudomonas spheroides. J. Gen. Microbiol. 28: 599-605. https://doi.org/10.1099/00221287-28-4-599
- Fraley RT, Lueking DR, Kaplan S. 1978. Intracytoplasmic membrane synthesis in synchronous cell populations of Rhodopseudomonas sphaeroides. Polypeptide insertion into growing membrane. J. Biol. Chem. 253: 458-464.
- Tanaka K, Kakuno T, Yamashita J, Horio T. 1982. Purification and properties of chlorophyllase from greened rye seedlings. J. Biochem. 92: 1763-1773. https://doi.org/10.1093/oxfordjournals.jbchem.a134106
- Meinhardt SW, Kiley PJ, Kaplan S, Crofts AR, Harayama S. 1985. Characterization of light-harvesting mutants of Rhodopseudomonas sphaeroides. I. Measurement of the efficiency of energy transfer from light-harvesting complexes to the reaction center. Arch. Biochem. Biophys. 236: 130-139. https://doi.org/10.1016/0003-9861(85)90612-5
- Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR. 1989. Structural origins of high-affinity biotin binding to streptavidin. Science 243: 85-88. https://doi.org/10.1126/science.2911722
- Cartron ML, Olsen JD, Sener M, Jackson PJ, Brindley AA, Qian P, et al. 2014. Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides. Biochim. Biophys. Acta 1837: 1769-1780. https://doi.org/10.1016/j.bbabio.2014.02.003
-
Etzold C, Deckers-Hebestreit G, Altendorf K. 1997. Turnover number of Escherichia coli
$F_oF_1$ ATP synthase for ATP synthesis in membrane vesicles. Eur. J. Biochem. 243: 336-343. https://doi.org/10.1111/j.1432-1033.1997.0336a.x - Berghoff BA, Glaeser J, Nuss AM, Zobawa M, Lottspeich F, Klug G. 2011. Anoxygenic photosynthesis and photooxidative stress: a particular challenge for Roseobacter. Environ. Microbiol. 13: 775-791. https://doi.org/10.1111/j.1462-2920.2010.02381.x
- Nandi A, Chatterjee IB. 1987. Scavenging of superoxide radical by ascorbic acid. J. Biosci. 11: 435-441. https://doi.org/10.1007/BF02704692
- Castro ML, Carson GM, McConnell MJ, Herst PM. 2017. High dose ascorbate causes both genotoxic and metabolic stress in glioma cells. Antioxidants 6: 58. https://doi.org/10.3390/antiox6030058
- Dzeja PP, Zeleznikar RJ, Goldberg ND. 1998. Adenylate kinase: kinetic behavior in intact cells indicates it is integral to multiple cellular processes. Mol. Cell. Biochem. 184: 169-182. https://doi.org/10.1023/A:1006859632730
- Valentine WN, Paglia DE, Nakatani M, Brockway RA. 1989. Inhibition of adenylate kinase by P1,P5-di(adenosine 5') pentaphosphate in assays of erythrocyte enzyme activities requiring adenine nucleotides. Am. J. Hematol. 32: 143-145. https://doi.org/10.1002/ajh.2830320213
- Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40: 1451-1463. https://doi.org/10.1016/j.enzmictec.2007.01.018
- Martinek K, Klibanov AM, Goldmacher VS, Berezin IV. 1977. The principles of enzyme stabilization. I. Increase in thermostability of enzymes covalently bound to a complementary surface of a polymer support in a multipoint fashion. Biochim. Biophys. Acta 485: 1-12. https://doi.org/10.1016/0005-2744(77)90188-7
- Klibanov AM. 1979. Enzyme stabilization by immobilization. Anal. Biochem. 93: 1-25. https://doi.org/10.1016/S0003-2697(79)80110-4
- Klibanov AM, Kaplan NO, Kamen MD. 1978. A rationale for stabilization of oxygen-labile enzymes: application to a clostridial hydrogenase. Proc. Natl. Acad. Sci. USA 75: 3640-3643. https://doi.org/10.1073/pnas.75.8.3640
- Yoshida H, Hara KY, Kiriyama K, Nakayama H, Okazaki F, Matsuda F, et al. 2011. Enzymatic glutathione production using metabolically engineered Saccharomyces cerevisiae as a whole-cell biocatalyst. Appl. Microbiol. Biotechnol. 91: 1001-1006. https://doi.org/10.1007/s00253-011-3196-4
- Hara KY, Shimodate N, Hirokawa Y, Ito M, Baba T, Mori H, et al. 2009. Glutathione production by efficient ATP-regenerating Escherichia coli mutants. FEMS Microbiol. Lett. 297: 217-224. https://doi.org/10.1111/j.1574-6968.2009.01682.x
- Hara KY, Mori H. 2006. An efficient method for quantitative determination of cellular ATP synthetic activity. J. Biomol. Screen. 11: 310-317. https://doi.org/10.1177/1087057105285112
Cited by
- Chromatophores efficiently promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment artificial cells vol.118, pp.7, 2017, https://doi.org/10.1073/pnas.2012170118