DOI QR코드

DOI QR Code

Production of Bacterial Quorum Sensing Antagonists, Caffeoyl- and Feruloyl-HSL, by an Artificial Biosynthetic Pathway

  • Kang, Sun-Young (Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Bo-Min (Infectious Disease Research Center, KRIBB) ;
  • Heo, Kyung Taek (Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jang, Jae-Hyuk (Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Won-Gon (Infectious Disease Research Center, KRIBB) ;
  • Hong, Young-Soo (Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2017.05.12
  • Accepted : 2017.09.17
  • Published : 2017.12.28

Abstract

A new series comprising phenylacetyl-homoserine lactones (HSLs), caffeoyl-HSL and feruloyl-HSL, was biologically synthesized using an artificial de novo biosynthetic pathway. We developed an Escherichia coli system containing artificial biosynthetic pathways that yield phenylacetyl-HSLs from simple carbon sources. These artificial biosynthetic pathways contained the LuxI-type synthase gene (rpaI) in addition to caffeoyl-CoA and feruloyl-CoA biosynthetic genes, respectively. Finally, the yields for caffeoyl-HSL and feruloyl-HSL were $97.1{\pm}10.3$ and $65.2{\pm}5.7mg/l$, respectively, by tyrosine-overproducing E. coli with a $\text\tiny{L}$-methionine feeding strategy. In a quorum sensing (QS) competition assay, feruloyl-HSL and p-coumaroyl-HSL antagonized the QS receptor TraR in Agrobacterium tumefaciens NT1, whereas caffeoyl-HSL did not.

Keywords

References

  1. Waters CM, Bassler BL. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21: 319-346. https://doi.org/10.1146/annurev.cellbio.21.012704.131001
  2. Papenfort K, Bassler BL. 2016. Quorum sensing signal-response systems in gram-negative bacteria. Nat. Rev. Microbiol. 14: 576-588. https://doi.org/10.1038/nrmicro.2016.89
  3. Williams P. 2007. Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153: 3923-3938. https://doi.org/10.1099/mic.0.2007/012856-0
  4. Surette MG, Miller MB, Bassler BL. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA 96: 1639-1644. https://doi.org/10.1073/pnas.96.4.1639
  5. Galloway WR, Hodgkinson JT, Bowden SD, Welch M, Spring DR. 2011. Quorum sensing in gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem. Rev. 111: 28-67. https://doi.org/10.1021/cr100109t
  6. Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55: 165-199. https://doi.org/10.1146/annurev.micro.55.1.165
  7. Tang K, Zhang XH. 2014. Quorum quenching agents: resources for antivirulence therapy. Mar. Drugs 12: 3245-3282. https://doi.org/10.3390/md12063245
  8. Geske GD, O'Neill JC, Miller DM, Wezeman RJ, Mattmann ME, Lin Q, et al. 2008. Comparative analyses of N-acylated homoserine lactones reveal unique structural features that dictate their ability to activate or inhibit quorum sensing. ChemBioChem 9: 389-400. https://doi.org/10.1002/cbic.200700551
  9. Welsh MA, Eibergen NR, Moore JD, Blackwell HE. 2015. Small molecule disruption of quorum sensing cross-regulation in Pseudomonas aeruginosa causes major and unexpected alterations to virulence phenotypes. J. Am. Chem. Soc. 137: 1510-1519. https://doi.org/10.1021/ja5110798
  10. Geske GD, Wezeman RJ, Siegel AP, Blackwell HE. 2005. Small molecule inhibitors of bacterial quorum sensing and biofilm formation. J. Am. Chem. Soc. 127: 12762-12763. https://doi.org/10.1021/ja0530321
  11. Ahlgren NA, Harwood CS, Schaefer AL, Giraud E, Greenberg EP. 2011. Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia. Proc. Natl. Acad. Sci. USA 108: 7183-7188. https://doi.org/10.1073/pnas.1103821108
  12. Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Bittan-Banin G, et al. 2008. A new class of homoserine lactone quorum-sensing signals. Nature 454: 595-599. https://doi.org/10.1038/nature07088
  13. Pan C, Oda Y, Lankford PK, Zhang B, Samatova NF, Pelletier DA, et al. 2008. Characterization of anaerobic catabolism of p-coumarate in Rhodopseudomonas palustris b y integrating transcriptomics and quantitative proteomics. Mol. Cell. Proteomics 7: 938-948. https://doi.org/10.1074/mcp.M700147-MCP200
  14. Stacy DM, Welsh MA, Rather PN, Blackwell HE. 2012. Attenuation of quorum sensing in the pathogen Acinetobacter baumannii using non-native N-acyl homoserine lactones. ACS Chem. Biol. 7: 1719-1728. https://doi.org/10.1021/cb300351x
  15. Palmer AG, Streng E, Blackwell HE. 2011. Attenuation of virulence in pathogenic bacteria using synthetic quorum-sensing modulators under native conditions on plant hosts. ACS Chem. Biol. 6: 1348-1356. https://doi.org/10.1021/cb200298g
  16. McInnis CE, Blackwell HE. 2014. Non-native N-aroyl L-homoserine lactones are potent modulators of the quorum sensing receptor RpaR in Rhodopseudomonas palustris. ChemBioChem 15: 87-93. https://doi.org/10.1002/cbic.201300570
  17. Eibergen NR, Moore JD, Mattmann ME, Blackwell HE. 2015. Potent and selective modulation of the RhlR quorum sensing receptor by using non-native ligands: an emerging target for virulence control in Pseudomonas aeruginosa. ChemBioChem 16: 2348-2356. https://doi.org/10.1002/cbic.201500357
  18. Hirakawa H, Oda Y, Phattarasukol S, Armour CD, Castle JC, Raymond CK, et al. 2011. Activity of the Rhodopseudomonas palustris p-coumaroyl-homoserine lactone-responsive transcription factor RpaR. J. Bacteriol. 193: 2598-2607. https://doi.org/10.1128/JB.01479-10
  19. Lee D, Douglas CJ. 1996. Two divergent members of a tobacco 4-coumarate: coenzyme A ligase (4CL) gene family. cDNA structure, gene inheritance and expression, and properties of recombinant proteins. Plant Physiol. 112: 193-205. https://doi.org/10.1104/pp.112.1.193
  20. Kang SY, Lee JK, Jang JH, Hwang BY, Hong YS. 2015. Production of phenylacetyl-homoserine lactone analogs by artificial biosynthetic pathway in Escherichia coli. Microb. Cell Fact. 14: 191. https://doi.org/10.1186/s12934-015-0379-1
  21. Kang SY, Choi O, Lee JK, Hwang BY, Uhm TB, Hong YS. 2012. Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain. Microb. Cell Fact. 11: 153. https://doi.org/10.1186/1475-2859-11-153
  22. Choi O, Wu CZ, Kang SY, Ahn JS, Uhm TB, Hong YS. 2011. Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli. J. Ind. Microbiol. Biotechnol. 38: 1657-1665. https://doi.org/10.1007/s10295-011-0954-3
  23. Berner M, Krug D, Bihlmaier C, Vente A, Muller R, Bechthold A. 2006. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis. J. Bacteriol. 188: 2666-2673. https://doi.org/10.1128/JB.188.7.2666-2673.2006
  24. Heo KT, Kang SY, Hong YS. 2017. De novo biosynthesis of pterostilbene in an Escherichia coli strain using a new resveratrol O-methyltransferase from Arabidopsis. Microb. Cell Fact. 16: 30. https://doi.org/10.1186/s12934-017-0644-6
  25. Do CT, Pollet B, Thevenin J, Sibout R, Denoue D, Barriere Y, et al. 2007. Both caffeoyl coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226: 1117-1129. https://doi.org/10.1007/s00425-007-0558-3
  26. Kang SY, Choi O, Lee JK, Ahn JO, Ahn JS, Hwang BY, Hong YS. 2015. Artificial de novo biosynthesis of hydroxystyrene derivatives in a tyrosine overproducing Escherichia coli strain. Microb. Cell Fact. 14: 78. https://doi.org/10.1186/s12934-015-0268-7
  27. Zhang L, Murphy PJ, Kerr A, Tate ME. 1993. Agrobacterium conjugation and gene regulation by N-acyl-$\small{L}$-homoserine lactones. Nature 362: 446-448. https://doi.org/10.1038/362446a0
  28. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, et al. 1997. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143: 3703-3711. https://doi.org/10.1099/00221287-143-12-3703
  29. Hu H, Qian J, Chu J, Wang Y, Zhuang Y, Zhang S. 2009. Optimization of L-methionine feeding strategy for improving S-adenosyl-$\small{L}$-methionine production by methionine adenosyltransferase overexpressed Pichia pastoris. Appl. Microbiol. Biotechnol. 83: 1105-1114. https://doi.org/10.1007/s00253-009-1975-y
  30. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP. 2000. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407: 762-764. https://doi.org/10.1038/35037627

Cited by

  1. Inhibition of Microbial Quorum Sensing Mediated Virulence Factors by Pestalotiopsis sydowiana vol.30, pp.4, 2017, https://doi.org/10.4014/jmb.1907.07030
  2. Construction of an Artificial Biosynthetic Pathway for Zingerone Production in Escherichia coli Using Benzalacetone Synthase from Piper methysticum vol.69, pp.48, 2017, https://doi.org/10.1021/acs.jafc.1c05534