References
- Bate A, Lindquist M, Edwards IR, et al. A Bayesian neural network method for adverse drug reaction signal generation. Eur J Clin Pharmacol 1998;54:315-21. https://doi.org/10.1007/s002280050466
- Evans SJ, Waller PC, Davis S. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol Drug Saf 2001;10:483-6. https://doi.org/10.1002/pds.677
- van Puijenbroek EP, Bate A, Leufkens HG, et al. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol Drug Saf 2002;11:3-10. https://doi.org/10.1002/pds.668
- Harpaz R, Chase HS, Friedman C. Mining multi-item drug adverse effect associations in spontaneous reporting systems. BMC Bioinformatics 2010;11(suppl):S7.
- Ibrahim H, Saad A, Abdo A, et al. Mining association patterns of druginteractions using post marketing FDA's spontaneous reporting data. J Biomed Inform 2016;60:294-308. https://doi.org/10.1016/j.jbi.2016.02.009
- Korkontzelos I, Nikfarjam A, Shardlow M, et al. Analysis of the effect of sentiment analysis on extracting adverse drug reactions from tweets and forum posts. J Biomed Inform 2016;62:148-58. https://doi.org/10.1016/j.jbi.2016.06.007
- Duh MS, Cremieux P, Audenrode MV, et al. Can social media data lead to earlier detection of drug-related adverse events? Pharmacoepidemiol Drug Saf 2016;25:1425-33. https://doi.org/10.1002/pds.4090
- Harpaz R, Callahan A, Tamang S, et al. Text Mining for Adverse Drug Events: the Promise, Challenges, and State of the Art. Drug Saf 2014;37:777-90. https://doi.org/10.1007/s40264-014-0218-z
- Wu L, Moh TS, Khuri N. Twitter Opinion Mining for Adverse Drug Reactions. In; IEEE International Conference on Big Data, Washington DC, USA, December 7, 2015.
- Fang R, Pouyanfar S, Yang Y, et al. Computational Health Informatics in the Big Data Age: A Survey. ACM Computing Surveys 2016;49:12.
- Raghupathi W, Raghupathi V. Big Data Analytics in Healthcare: Promise and Potential. Health Inf Sci Syst 2014;2:3. https://doi.org/10.1186/2047-2501-2-3
- Warrer P, Hansen EH, Juhl-Jensen L, et al. Using text-mining techniques in electronic patient records to identify ADRs from medicine use. Br J Clin Pharmacol 2011;73:674-84.
- Kim HH, Kim D, Jo J. Patent Data Analysis using Clique Analysis in a Keyword Network. Journal of the Korean Data and Information Science Society 2016;27:1273-84. https://doi.org/10.7465/jkdi.2016.27.5.1273
- Kim HH, Rhee HY. Trend Analysis of Data Mining Research Using Topic Network Analysis. Journal of the Korea Society of Computer and Information 2016;21:141-8.
- Manning CD, Raghavan P, Schutze H. Introduction to Information Retrieval, 1st ed. New York; Cambridge University Press, 2008; 109, 116-21.
- tm Package text Mining in R. Available from https://cran.r-project.org/web/packages/tm/vignettes/tm.pdf. Accessed June, 2017.
- Botsis T, Nguyen MD, Woo EJ, et al. Text mining for the Vaccine Adverse Event Reporting System: medical text classification using informative feature selection. J Am Med Inform Assoc 2011;18:631-8. https://doi.org/10.1136/amiajnl-2010-000022
- Wysowski DK, Chang JT. Alendronate and risedronate: Reports of severe bone, joint, and muscle pain. Arch Intern Med 2005;165:346-7. https://doi.org/10.1001/archinte.165.3.350
- DeMonaco HJ. Patient- and physician-oriented web sites and drug surveillance: Bisphosphonates and severe bone, joint, and muscle pain. Arch Intern Med 2009;169:1164-6. https://doi.org/10.1001/archinternmed.2009.133
Cited by
- Analysis of Unstructured Data on Detecting of New Drug Indication of Atorvastatin vol.43, pp.4, 2017, https://doi.org/10.21032/jhis.2018.43.4.329