DOI QR코드

DOI QR Code

Lipolysis Effect of Daucosterol Isolated from Mulberry (Morus alba) Leaves

뽕잎으로부터 순수분리한 daucosterol의 lipolysis 효과

  • Li, Ke (Department of Horticultural Bioscience, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Lee, Mi Lim (Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Que, Lu (Department of Horticultural Bioscience, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Li, Mae (Department of Horticultural Bioscience, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Kang, Jum Soon (Department of Horticultural Bioscience, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Choi, Yung Hyun (Department of Biochemistry, College of Oriental Medicine, Dongeui University) ;
  • Kim, Kyung Mi (NOVAREX Co., Ltd. Life Science Institute) ;
  • Jung, Jae-Chul (NOVAREX Co., Ltd. Life Science Institute) ;
  • Hwang, Dae Youn (Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Choi, Young Whan (Department of Horticultural Bioscience, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University)
  • 이커 (부산대학교 원예생명과학과/생명산업융합연구원) ;
  • 이미림 (부산대학교 바이오소재과학과) ;
  • 루쿼 (부산대학교 원예생명과학과/생명산업융합연구원) ;
  • 이매 (부산대학교 원예생명과학과/생명산업융합연구원) ;
  • 강점순 (부산대학교 원예생명과학과/생명산업융합연구원) ;
  • 최영현 (동의대학교 생화학과) ;
  • 김경미 ((주) 노바렉스) ;
  • 정재철 ((주) 노바렉스) ;
  • 황대연 (부산대학교 바이오소재과학과) ;
  • 최영환 (부산대학교 원예생명과학과/생명산업융합연구원)
  • Received : 2017.10.23
  • Accepted : 2017.12.13
  • Published : 2017.12.30

Abstract

Plants are reservoirs of naturally occurring chemical compounds and of structurally diverse bioactive molecules. The aim of this investigation was to screen for the presence of phytochemicals responsible for the lipolysis activity in mulberry (Morus alba) leaves, which are important in traditional Asian medicinal plants. Powdered mulberry leaves were extracted with hexane, ethyl acetate, and methanol. Daucosterol was isolated from the EtOAc extract of mulberry leaves, and its structure was elucidated by NMR spectral analyses. The NMR assignments for the compound were determined using $^1H$, $^{13}C$, DEPT, COSY, HSQC, and HMBC NMR spectral data. Daucosterol showed a concentration-dependent lipolysis activity that may impart medicinal properties that can be exploited by medical practitioners for the treatment of various diseases. However, further studies should be conducted to elucidate additional mechanisms of daucosterol.

뽕나무는 약 40여 속과 1,000여 종이 있는 것으로 알려져 있으며, 항염증, 항진정, 지사작용, 노화억제 및 신경보호작용이 있는 것으로 알려져 있다. 본 연구에서는 아시아 지역에서 전통 한약재로 사용되는 뽕 나무 잎의 지방분해 활성에 관여하고 있는 물질을 스크린하기 위하여 뽕잎 분말을 헥산, 에틸 아세테이트 및 메탄올로 순차 추출하였다. 뽕 잎의 EtOAc 추출물로부터 daucosterol이 순수분리 되었으며, 그 구조는 $^1H$, $^{13}C$, DEPT, COSY, HSQC 및 HMBC 등의 NMR스펙트럼 분석에 의해 밝혀졌다. Daucosterol은 농도 의존적으로 지질분해 효과를 나타내었는데, 본 연구의 결과로부터 뽕나무 잎으로부터 순수분리한 daucosterol의 지분분해 활성은 다양한 질병을 치료하기 위한 천연물 소재 또는 지표성분으로서 활용이 가능할 것으로 생각된다. 그러나 보다 효율적으로 이용하기 위해서는 daucosterol의 비만에 관한 생리활성 기작에 대한 추가적인 연구가 필요할 것이다.

Keywords

References

  1. Asano, N., Nash, R. J., Molyneux, R. J. and Fleet, G. W. J. 2000. Sugar-mimic glycosidase inhibitors: Natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron Asymmetry 11, 1645-1680. https://doi.org/10.1016/S0957-4166(00)00113-0
  2. Awad, A. B., Gan, Y. and Fink, C. S. 2000. Effect of ${\beta}$-sitosterol, a plant sterol, on growth, protein phosphatase 2A, and phospholipase D in LNCaP cells. Nutr. Cancer 36, 74-78. https://doi.org/10.1207/S15327914NC3601_11
  3. Bradford, P. G. and Awad, A. B. 2007. Phytosterols as anticancer compounds. Mol. Nutr. Food Res. 51, 161-170. https://doi.org/10.1002/mnfr.200600164
  4. Chauhan, S., Devi, U., Kumar, V. R., Kumar, V., Anwar, F. and Kaithwas, G. 2015. Dual inhibition of arachidonic acid pathway by mulberry leaf extract. Inflammopharmacology 23, 65-70. https://doi.org/10.1007/s10787-014-0223-y
  5. Choi, J. N., Choi, Y. H., Lee, J. M., Noh, I. C., Park, J. W., Choi, W. S. and Choi, J. H. 2012. Anti-inflammatory effects of ${\beta}$-sitosterol-${\beta}$-D-glucoside from Trachelospermum jasminoides (Apocynaceae) in lipopolysaccharide-stimulated RAW 264.7 murine macrophages. Nat. Prod. Res. 26, 2340-2343. https://doi.org/10.1080/14786419.2012.654608
  6. Choi, S. J., Jeon, H., Lee, C. U., Yoon, S. H., Bae, S. K., Chin, Y. W. and Yoon, K. D. 2015. Isolation and development of quantification method for cyanidin-3-glucoside and cyanidin-3-rutinoside in mulberry fruit by high-performance countercurrent chromatography and high-performance liquid chromatography. Nat. Prod. Sci. 21, 20-24.
  7. Evans, S. V., Fellows, L. E., Shing, T. K. M. and Fleet, G. W. J. 1985. Glycosidase inhibition by plant alkaloids which are structural analogues of monosaccharides. Phytochemistry 24, 1953-1955. https://doi.org/10.1016/S0031-9422(00)83099-X
  8. Fukai, T., Satoh, K., Nomura, T. and Sakagami, H. 2003. Antinephritis and radical scavenging activity of prenylflavonoids. Fitoterapia 74, 720-724. https://doi.org/10.1016/j.fitote.2003.07.004
  9. Ho, J. N., Kim, O. K., Nam, D. E., Jun, W. and Lee, J. 2014. Pycnogenol supplementation promotes lipolysis via activation of cAMP-dependent PKA in ob/ob mice and primary-cultured adipocytes. J. Nutr. Sci. Vitaminol. 60, 429-435. https://doi.org/10.3177/jnsv.60.429
  10. Hui, W. H., Li, M. M. and Wong, K. M. 1976. A New compound, 21-a-Hydroxy friedel-4,23-En-3-one and other triterpenoids from Phyllanthus reticulantus. Phytochemistry 15, 797-798. https://doi.org/10.1016/S0031-9422(00)94448-0
  11. Ivorra, M. D., D'Ocon, M. P., Paya, M. and Villar, A. 1988. Antihyperglycemic and insulin-releasing effects of ${\beta}$-sitosterol-3-${\beta}$-D-glucoside and its aglycone, ${\beta}$-sitosterol. Arch. Int. Pharmacodyn. Ther. 296, 224-231.
  12. Jeong, J. Y., Jo, Y. H., Kim, S. B., Liu, Q., Lee, J. W., Mo, E. J., Lee, K. Y., Hwang, B. Y. and Lee, M. K. 2015. Pancreatic lipase inhibitory constituents from Morus alba leaves and optimization for extraction conditions. Bioorg. Med. Chem. Lett. 25, 2269-2274. https://doi.org/10.1016/j.bmcl.2015.04.045
  13. Jimenez-Escrig, A., Santos-Hidalgo, A. B. and Saura-Calixto, F. 2006. Common sources and estimated intake of plant sterols in the Spanish diet. J. Agric. Food Chem. 54, 3462-3471. https://doi.org/10.1021/jf053188k
  14. Kelkar, S. M., Bapat, V. A., Ganapathi, T. R., Kaklig, G. S., Rao, P. S. and Heble, M. R. 1996. Determination of hypoglycemic activity in Morus indica L. (mulberry) shoot cultures. Curr. Sci. 71, 71-72.
  15. Khan, M. U. N. M. and Hossain, S. Md. 2015. Scopoletin and ${\beta}$-sitosterol glucoside from roots of Ipomoea digitata. J. Pharmacog. Phytochem. 4, 5-7.
  16. Kobayashi, M., Tsuru, R., Todo, K. and Mitsuhashi, H. 1973. Marine sterols-II : Asterosterol, a new C26 sterol from Asterias amurensis lutken. Tetrahedron 29, 1193-1194. https://doi.org/10.1016/0040-4020(73)80100-0
  17. Moreau, R. A., Whitaker, B. D. and Hicks, K. B. 2002. Phytosterols, phytostanols, and their conjugates in foods: Structural diversity, quantitative analysis, and health promoting uses. Prog. Lipid Res. 41, 457-500. https://doi.org/10.1016/S0163-7827(02)00006-1
  18. Nair, P. P., Turjman, N., Kessie, G., Calkins, B., Goodman, G. T., Davidovitz, H. and Nimmagadda, G. 1984. Diet, nutrition intake, and metabolism in populations at high and low risk for colon cancer. Dietary cholesterol, ${\beta}$-sitosterol, and stigmasterol. Am. J. Clin. Nutr. 40(4 Suppl), 927-930. https://doi.org/10.1093/ajcn/40.4.927
  19. Nakagawa, K. 2013. Studies targeting ${\alpha}$-glucosidase inhibition, antiangiogenic effects, and lipid modification regulation: background, evaluation, and challenges in the development of food ingredients for therapeutic purposes. Biosci. Biotechnol. Biochem. 77, 900-908. https://doi.org/10.1271/bbb.120908
  20. Nomura, T. 1999. The chemistry and biosynthesis of isoprenylated flavonoids from moraceous plants. Pure Appl. Chem. 71, 1115-1118. https://doi.org/10.1351/pac199971061115
  21. Pawlowska, A. M., Oleszek, W. and Braca, A. 2008. Qualiquantitative analyses of flavonoids of Morus nigra L. and Morus alba L. (Moraceae) fruits. J. Agric. Food Chem. 56, 3377-3380. https://doi.org/10.1021/jf703709r
  22. Piao, S. J., Chen, L. X., Kang, N. and Qiu, F. 2011. Simultaneous determination of five characteristic stilbene glycosides in root bark of Morus albus L. (Cortex Mori) using high-performance liquid chromatography. Phytochem. Anal. 22, 230-235. https://doi.org/10.1002/pca.1270
  23. Rubis, B., Paszel, A., Kaczmarek, M., Rudzinska, M., Jelen, H. and Rybczynska, M. 2008. Beneficial or harmful influence of phytosterols on human cells? Br. J. Nutr. 100, 1183-1191. https://doi.org/10.1017/S0007114508981423
  24. Ryan, E., Galvin, K., O'Connor, T. P., Maguire, A. R. and O'Brien, N. M. 2006. Fatty acid profile, tocopherol, squalene and phytosterol content of Brazil, pecan, pine, pistachio and cashew nuts. Int. J. Food Sci. Nutr. 57, 219-228. https://doi.org/10.1080/09637480600768077
  25. Shirishkumar, D. A., Ashwini, V. M. and Prashant, D. A. 2014. Pharmacological, nutritional, and analytical aspects of ${\beta}$-sitosterol: a review. Orient. Pharm. Exp. Med. 14, 193-211. https://doi.org/10.1007/s13596-014-0151-9
  26. Tsuduki, T., Kikuchi, I., Kimura, T., Nakagawa, K. and Miyazawa, T. 2013. Intake of mulberry 1-deoxynojirimycin prevents diet-induced obesity through increases in adiponectin in mice. Food Chem. 139, 16-23. https://doi.org/10.1016/j.foodchem.2013.02.025
  27. Venkatesh, K. P. and Chauhan, S. J. 2008. Mulberry: Life enhancer. J. Med. Plants Res. 2, 271-278.
  28. Vijayan, K., Chauhan, S., Das, N. K., Chakraborti, S. P. and Roy, B. N. 1997. Leaf yield component combining abilities in mulberry (Morus s pp). Euphytica 98, 47-52. https://doi.org/10.1023/A:1003066613099
  29. Watson, L. and Dallwitz, M. J. 2007. In The Families of Flowering Plants: Descriptions, Illustrations, Identification, and Information Retrieval, 1992 onward; June 1, 2007, version; http://delta-intkey.com.
  30. Winchester, B. and Fleet, G. W. J. 1992. Amino-sugar glycosidase inhibitors: Versatile tools for glycobiologists. Glycobiology 2, 199-210. https://doi.org/10.1093/glycob/2.3.199
  31. Woyengo, T. A., Ramprasath, V. R. and Jones, P. J. H. 2009. Anticancer effects of phytosterols. Eur. J. Clin. Nutr. 63, 813-820. https://doi.org/10.1038/ejcn.2009.29
  32. Yang, Z. G., Matsuzaki, K., Takamatsu, S. and Kitanaka, S. 2011. Inhibitory effects of constituents from Morus alba var. multicaulis on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells. Molecules 16, 6010-6022. https://doi.org/10.3390/molecules16076010
  33. Zelova, H., Hanakova, Z., Cermakova, Z., Smejkal, K., Dall Acqua, S., Babula, P., Cvacka, J. and Hosek, J. 2014. Evaluation of anti-inflammatory activity of prenylated substances isolated from Morus alba and Morus nigra. J. Nat. Prod. 77, 1297-1303. https://doi.org/10.1021/np401025f
  34. Zhao, J., Zhang, C. Y., Xu, D. M., Huang, G. Q., Xu, Y. L., Wang, Z. Y., Fang, S. D., Chen, Y. and Gu, Y. L. 1990. The antiatherogenic effects of components isolated from pollen typhae. Thromb. Res. 57, 957-966. https://doi.org/10.1016/0049-3848(90)90162-6
  35. Zhao, M., Chen, C. C., Yang, S. Q. and Zhang, S. J. 2012. Chemical constituents from leaves of Morus alba Linn. Zhongchengyao 34, 1126-1131.
  36. Zhao, S., Park, C. H., Li, X., Kim, Y. B., Yang, J., Sung, G. B., Park, N. I., Kim, S. and Park, S. U. 2015. Accumulation of rutin and betulinic acid and expression of phenylpropanoid and triterpenoid biosynthetic genes in mulberry (Morus alba L.). J. Agric. Food Chem. 63, 8622-8630. https://doi.org/10.1021/acs.jafc.5b03221