DOI QR코드

DOI QR Code

출아효모에서 xylitol dehydrogenase (XYL2)의 최적 생산을 위한 발현 시스템 구축

Expression System for Optimal Production of Xylitol Dehydrogenase (XYL2) in Saccharomyces cerevisiae

  • 정회명 (동의대학교 스마트바이오헬스학과) ;
  • 김연희 (동의대학교 스마트바이오헬스학과)
  • Jung, Hoe-Myung (Department of Smart bio-health, Dong-Eui University) ;
  • Kim, Yeon-Hee (Department of Smart bio-health, Dong-Eui University)
  • 투고 : 2017.08.16
  • 심사 : 2017.11.22
  • 발행 : 2017.12.30

초록

본 연구에서는 lignocellulosic biomass (xylose)의 부가가치를 높이고 효율적인 활용을 위해 xylitol dehydrogenase를 Saccharomyces cerevisiae 숙주세포에서 분비 생산하고자 하였다. 먼저 S. cerevisiae와 Pichia stipitis유래 XYL2 유전자(S.XYL2 and P.XYL2 gene)의 발현 시스템을 구축하기 위하여 GAL10 promoter와 ADH1 promoter 하류에 각각 mating factor ${\alpha}$ ($MF{\alpha}$) signal sequence와 XYL2유전자를 가진 $pGMF{\alpha}-S.XYL2$, $pGMF{\alpha}-P.XYL2$, $pAMF{\alpha}-S.XYL2$$pAMF{\alpha}-P.XYL2$ plasmid를 구축하였다. 각각의 plasmid는 S. cerevisiae $SEY2102{\Delta}trp1$ 균주에 형질전환되었고, 생산된 xylitol dehydrogenase의 활성을 조사해 본 결과, GAL10 promoter가 ADH1 promoter보다 XYL2유전자의 발현에 더욱 적합함을 확인 할 수 있었다. 또한 P. stipitis 유래의 xylitol dehydrogenase 효소 활성이 S. cerevisiae 유래의 효소 활성보다 2배 이상 더 높았으며, 활성의 증가를 위해 두 유전자 모두 cofactor로 $NAD^+$에 의존한다는 것을 확인하였다. 재조합 유전자가 가지는 분비서열에 의해 $SEY2102{\Delta}trp1/pGMF{\alpha}-P.XYL2$ 균주에서 xylitol dehydrogenase의 약 77%는 periplasmic space로 분비 발현되었음을 알 수 있었다. 또한 재조합 xylitol dehydrogenase의 효율적인 생산을 위해 탄소원의 영향을 조사해본 결과, glucose 단독보다 glucose와 xylose를 혼합 배양한 경우에서 효소활성이 최대 41% 정도 증가되었음을 확인 할 수 있었다. 본 연구에서 최적화한 발현 시스템 및 배양 조건은 xylose 뿐만 아니라 다양한 biomass를 이용한 유용물질 생산을 위한 관련 단백질의 발현 분비시스템 구축 및 대량생산에도 응용될 수 있을 것이라 생각된다.

In this study, the xylitol dehydrogenase (XYL2) gene was expressed in Saccharomyces cerevisiae as a host cell for ease of use in the degradation of lignocellulosic biomass (xylose). To select suitable expression systems for the S.XYL2 gene from S. cerevisiae and the P.XYL2 gene from Pichia stipitis, $pGMF{\alpha}-S.XYL2$, $pGMF{\alpha}-P.XYL2$, $pAMF{\alpha}-S.XYL2$ and $pAMF{\alpha}-P.XYL2$ plasmids with the GAL10 promoter and ADH1 promoter, respectively, were constructed. The mating factor ${\alpha}$ ($MF{\alpha}$) signal sequence was also connected to each promoter to allow secretion. Each plasmid was transformed into S. cerevisiae $SEY2102{\Delta}trp1$ strain and the xylitol dehydrogenase activity was investigated. The GAL10 promoter proved more suitable than the ADH1 promoter for expression of the XYL2 gene, and the xylitol dehydrogenase activity from P. stipitis was twice that from S. cerevisiae. The xylitol dehydrogenase showed $NAD^+$-dependent activity and about 77% of the recombinant xylitol dehydrogenase was secreted into the periplasmic space of the $SEY2102{\Delta}trp1/pGMF{\alpha}-P.XYL2$ strain. The xylitol dehydrogenase activity was increased by up to 41% when a glucose/xylose mixture was supplied as a carbon source, rather than glucose alone. The expression system and culture conditions optimized in this study resulted in large amounts of xylitol dehydrogenase using S. cerevisiae as the host strain, indicating the potential of this expression system for use in bioethanol production and industrial applications.

키워드

참고문헌

  1. Arsenis, C. and Touster, O. 1969. Nicotinamide adenine dinucleotide phosphate-linked xylitol dehydrogenase in guinea pig liver cytosol. J. Biol. Chem. 244, 3895-3899.
  2. Batt, C. A., Caryallo, S., Easson, D. D., Akedo, M. and Sinskey, A. J. 1986. Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae. Biotechnol. Bioeng. 28, 549-553. https://doi.org/10.1002/bit.260280411
  3. Bradford, M. M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Deng, X. X. and Ho, N. W. 1990. Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Appl. Biochem. Biotechnol. 24/25, 193-199. https://doi.org/10.1007/BF02920245
  5. Eliasson, A., Christensson, C., Wahlbom, C. F. and Hahn-Hagerdal, B. 2000. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 66, 3381-3386. https://doi.org/10.1128/AEM.66.8.3381-3386.2000
  6. Gietz R. D. and Schiestl, R. H. 1995. Transforming yeast with DNA. Methods Mol. Cell. Biol. 5, 225-269.
  7. Hahn-Hägerdahl, B., Jeppson, H., Skoog, K. and Prior, B. A. 1994. Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microb. Technol. 16, 933-943. https://doi.org/10.1016/0141-0229(94)90002-7
  8. Hou, J., Shen, Y., Li, X. P. and Bao, X. M. 2007. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Lett. Appl. Microbiol. 45, 184-189. https://doi.org/10.1111/j.1472-765X.2007.02165.x
  9. Hummon, A. B., Lim, S. R., Difilippantonio, M. J. and Ried, T. 2007. Isolation and solubilization of proteins after TRIZOL extraction of RNA and DNA from patient material following prolonged storage. BioTechniques 42, 467-472. https://doi.org/10.2144/000112401
  10. Kim, M. J., Kim, B. H., Nam, S. W., Choi, E. S., Shin, D. H., Cho, H. Y., Son, K. H., Park, H. Y. and Kim, Y. H. 2013. Efficient secretory expression of recombinant endoxylanase from Bacillus sp. HY-20 in Saccharomyces cerevisiae. J. Life Sci. 23, 863-868. https://doi.org/10.5352/JLS.2013.23.7.863
  11. Kim, M. J., Nam, S. W., Tamano, K., Machida, M., Kim, S. K. and Kim, Y. H. 2011. Optimization for production of exo-${\beta}$-1,3-glucanase (laminarinase) from Aspergillus oryzae in Saccharomyces cerevisiae. Kor. J. Microbiol. Biotechnol. 26, 427-432.
  12. Kim, S. R., Ha, S. J., Kong, I. I. and Jin, Y. S. 2012. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab. Eng. 14, 336-343. https://doi.org/10.1016/j.ymben.2012.04.001
  13. Kim, S. R., Kwee, N. R., Kim, H. J. and Jin, Y. S. 2013. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. FEMS Yeast Res. 13, 312-321. https://doi.org/10.1111/1567-1364.12036
  14. Kim, Y. H., Ishikawa, D., Ho, P. H., Sugiyama, M., Kaneko, Y. and Haraghima, S. 2006. Chromosome XII context is important for rDNA function in yeast. Nucleic. Acids Res. 34, 2914-2924. https://doi.org/10.1093/nar/gkl293
  15. Kotter, P. and Ciriacy, M. 1993. Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 38, 776-783. https://doi.org/10.1007/BF00167144
  16. Latchinian-Sadek, L. and Thomas, D. Y. 1993. Expression, purification, and characterization of the yeast KEX1 gene product, a polypeptide precursor processing carboxypeptidase. J. Biol. Chem. 268, 534-540.
  17. Lim, M. Y., Lee, J. W., Lee, J. H., Kim, Y. H., Seo, J. H. and Nam, S. W. 2007. Secretory overexpression of clostridium endoglucanase A in Saccharomyces cerevisiae using GAL10 promoter and exoinulinase signal sequence. J. Life Sci. 17, 1248-1254. https://doi.org/10.5352/JLS.2007.17.9.1248
  18. Matsushika, A., Watanabe, S., Kodaki, T., Makino, K., Inoue, H., Murakami, K., Takimura, O. and Sawayama, S. 2008. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 281, 243-255.
  19. Nordling, E., Jornvall, H. and Persson, B. 2002. Mediumchain dehydrogenases/reductases (MDR). Family characterizations including genome comparisons and active site modeling. Eur. J. Biochem. 269, 4267-4276. https://doi.org/10.1046/j.1432-1033.2002.03114.x
  20. Richard, P., Toivari, M. H. and Penttila, M. 1999. Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase. FEBS Lett. 457, 135-138. https://doi.org/10.1016/S0014-5793(99)01016-9
  21. Riveros-Rosas, H., Julian-Sanchez, A., Villalobos-Molina, R., Pardo, J. P. and Pina, E.2003. Diversity, taxonomy and evo lution of medium-chain dehydrogenase/reductase superfamily. Eur. J. Biochem. 270, 3309-3334. https://doi.org/10.1046/j.1432-1033.2003.03704.x
  22. Rodriguez-Pena, J. M., Cid, V. J., Arroyo, J. and Nombela, C. 1998. The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 162, 155-160. https://doi.org/10.1111/j.1574-6968.1998.tb12993.x
  23. van Zyl, C., Prior, B. A., Kilian, S. G. and Brandt, E. V. 1993. Role of D-ribose as a cometabolite in D-xylose metabolism by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 59, 1487-1494.
  24. van Zyl, C., Prior, B. A., Kilian, S. G. and Kock, J. L. 1989. D-xylose utilization by Saccharomyces cerevisiae. J. Gen. Microbiol. 135, 2791-2798.
  25. Vernet, T., Dignard, D. and Thomas, D. Y. 1987. A family of yeast expression vectors containing the phage f1 intergenic region. Gene 52, 225-233. https://doi.org/10.1016/0378-1119(87)90049-7
  26. Zhang, J., Tian, S., Zhang, Y. and Yang, X. 2008. Construction of a recombinant S. cerevisiae expressing a fusion protein and study on the effect of converting xylose and glucose to ethanol. Appl. Biochem. Biotechnol. 150, 185-192. https://doi.org/10.1007/s12010-008-8203-6