DOI QR코드

DOI QR Code

Preparation of Diacylglycerol from Lard by Enzymatic Glycerolysis and Its Compositional Characteristics

  • Diao, Xiaoqin (College of Food and Pharmaceutical Engineering, Suihua University) ;
  • Guan, Haining (College of Food and Pharmaceutical Engineering, Suihua University) ;
  • Kong, Baohua (College of Food Science, Northeast Agricultural University) ;
  • Zhao, Xinxin (College of Food Science, Northeast Agricultural University)
  • Received : 2017.08.21
  • Accepted : 2017.10.17
  • Published : 2017.12.31

Abstract

The aim of this study was to prepare diacylglycerol (DAG) by enzymatic glycerolysis of lard. The effects of reaction parameters such as lipase type, reaction temperature, enzyme amount, substrate molar ratio (lard/glycerol), reaction time, and magnetic stirring speed were investigated. Lipozyme RMIM was found to be a more active biocatalyst than Novozym 435, and the optimal reaction conditions were 14:100 (W/W) of enzyme to lard substrate ratio, 1:1 of lard to glycerol molar ratio, and 500 rpm magnetic stirring speed. The reaction mixture was first incubated at $65^{\circ}C$ for 2 h and then transferred to $45^{\circ}C$ for 8 h. At the optimum reaction conditions, the conversion rate of triacylglycerol (TAG) and the content of DAG in the reaction mixture reached 76.26% and 61.76%, respectively, and the DAG content in purified glycerolized lard was 82.03% by molecular distillation. The distribution of fatty acids and Fourier transform infrared spectra in glycerolized lard samples were similar to those in lard samples. The results revealed that enzymatic glycerolysis and molecular distillation can be used to prepare more highly purified DAG from lard.

Keywords

References

  1. Awadallak, J. A., Voll, F., Ribas, M. C., Silva, C. D., Filho, L. C., and Silva, E. D. (2013) Enzymtic catalyzed palm oil hydrolysis under ultrasound irradiation: diacylglycerol synthesis. Ultrason. Sonochem. 20, 1002-1007. https://doi.org/10.1016/j.ultsonch.2012.11.017
  2. Eom, T. K., Kong, C. S., Byun, H. G., Jung, W. K., and Kim, S. K. (2010) Lipase catalytic synthesis of diacylglycerol from tuna oil and its anti-obesity effect in C57BL/6J mice. Process Biochem. 45, 738-743. https://doi.org/10.1016/j.procbio.2010.01.012
  3. Flickinger, B. D. and Matsuo, N. (2003) Nutritional characteristics of DAG oil. Lipids 38, 129-132. https://doi.org/10.1007/s11745-003-1042-8
  4. Gani, A., Ashwar, B. A., Akhter, G., Shah, A., Wani, I. A., and Masoodi, F A. (2017) Physico-chemical, structural, pasting and thermal properties of starches of fourteen himalayan rice cultivars. Int. J. Biol. Macromol. 95, 1101-1107. https://doi.org/10.1016/j.ijbiomac.2016.10.100
  5. Hong, S. I., Ma, N., Kim, I., Seo, J. J., and Kim, I. W. (2012) Lipase-catalyzed synthesis of capsiate analog using vanillyl alcohol and conjugated linoleic acid under vacuum system. Process Biochem. 47, 2317-2322. https://doi.org/10.1016/j.procbio.2012.09.011
  6. Jin, j., Li, D., Zhu, X. M., Adhikari, P., Lee, K. T., and Lee, J. H. (2011) Production of diacylglycerols from glycerol monooleate and ethyl oleate through free and immobilized lipase-catalyzed consecutive reactions. New Biotechnol. 28, 190-195. https://doi.org/10.1016/j.nbt.2010.10.005
  7. John Craven, R. and Lencki, Robert W. (2010) Preparation of diacid 1,3-diacylglycerols. J. Am. Oil Chem. Soc. 87, 1281- 1291. https://doi.org/10.1007/s11746-010-1625-7
  8. Kahveci, D., Guo, Z., Ozcelik, B., and Xu, X. B. (2010) Optimisation of enzymatic synthesis of diacylglycerols in binary medium systems containing ionic liquids. Food Chem. 119, 880-885. https://doi.org/10.1016/j.foodchem.2009.07.040
  9. Keng, P. S., Basri, M., Ariff, A. B., Abdul, M. B., Abdul Rah- man, R. N. Z., and Salleh, A. B.(2008) Scale-up synthesis of lipase-catalyzed palm esters in stirred-tank reactor. Bioresource Technol. 99, 6097-6104. https://doi.org/10.1016/j.biortech.2007.12.049
  10. Kondo, H., Hase, T., Murase, T., and Tokimitsu, I. (2003) Digestion and assimilation features of dietary DAG in the rat small intestine. Lipids 38, 25-30. https://doi.org/10.1007/s11745-003-1027-7
  11. Kristensen, J. B., Xu, X., and Mu, H. (2005) Process optimization using response surface design and pilot plant production of dietary diacylglycerols by lipase-catalyzed glycerolysis. J. Agr. Food Chem. 53, 7059-7066. https://doi.org/10.1021/jf0507745
  12. Lerma-Garcia, M. J., Ramis-Ramos, G., Herrero-Martinez, J. M., and Simo-Alfonso, E. F. (2010) Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chem. 1, 78-83.
  13. Lo, S. K., Baharin, B. S., Tan, C. P., and Lai, O. M. (2004) Enzyme-catalyzed production and chemical composition of diacylglycerols from corn oil deodorizer distillate. Food Biotechnol. 18, 265-278. https://doi.org/10.1081/FBT-200035014
  14. Lo, S. K., Tan, C. P., Long, K., Yusoff, M. S. A., and Lai, O. M. (2008) Diacylglycerol oil-properties, processes and products: A review. Food Bioprocess Tech. 1, 223-233. https://doi.org/10.1007/s11947-007-0049-3
  15. Maki, K. C., Davidson, M. H., Tsushima, R., Matsuo, N., Tokimitsu, I., Umporowicz, D. M., Dicklin, M. R., Foster, G. S., Ingram, K. A., Anderson, B. D., Frost, S. D., and Bell, M. (2002) Consumption of diacylglycerol oil as part of a reduced-energy diet enhances loss of body weight and fat in comparison with consumption of a triacylglycerol control oil. Am. J. Clin. Nutr. 76, 1230-1236. https://doi.org/10.1093/ajcn/76.6.1230
  16. Meng, X. H., Zou, D. Y., Shi, Z. P., Duan, Z. Y., and Mao, Z. G. (2004) Dietary diacylglycerol prevents high-fat diet-induced lipid accumulation in rat liver and abdominal adipose tissue. Lipids 39, 37-41. https://doi.org/10.1007/s11745-004-1199-1
  17. Miklos, R., Mora-Gallego, H., Larsen, F. H., Serra, X., Cheong, L.-Z., Xu, X., Arnau, J., and Lametsch, R. (2014) Influence of lipid type on water and fat mobility in fermented sausages studied by low-field NMR. Meat Sci. 96, 617-622. https://doi.org/10.1016/j.meatsci.2013.08.025
  18. Miklos, R., Xu, X. B., and Lametsch, R. (2011) Application of pork fat diacylglycerols in meat emulsions. Meat Sci. 87, 202-205. https://doi.org/10.1016/j.meatsci.2010.10.010
  19. Miklos, R., Zhang, H., Lametsch, R., and Xu, X. (2013) Physicochemical properties of lard-based diacylglycerols in blends with lard. Food Chem.138, 608-614. https://doi.org/10.1016/j.foodchem.2012.10.070
  20. Mora-Gallego, H., Serra, X., Guàrdia, M. D., Miklos, R., Lametsch, R., and Arnau, J. (2013) Effect of the type of fat on the physicochemical, instrumental and sensory characteristics of reduced fat non-acid fermented sausages. Meat Sci. 93, 668-674. https://doi.org/10.1016/j.meatsci.2012.11.042
  21. Morita, O. and Soni, M. G. (2009) Safety assessment of diacylglycerol oil as edible oil: a review of the published literature. Food Chem. Toxicol. 47, 9-21. https://doi.org/10.1016/j.fct.2008.09.044
  22. Murase, T., Aoki, M., Wakisaka, T., Hase, T., and Tokimitsu, I. (2002) Anti-obesity effect of dietary diacylglycerol in C57 BL/6J mice: dietary diacylglycerol stimulates intestinal lipid metabolism. J. Lipid Res. 43, 1312-1319.
  23. Ng, S. P., Lai, O. M., Abas, F., Lim, H. K., Beh, M. K., Ling, T. C., and Tan, C.P. (2014) Compositional and thermal characteristics of palm olein-based diacylglycerol in blends with palm super olein. Food Res. Int. 55, 62-69. https://doi.org/10.1016/j.foodres.2013.10.035
  24. Noureddini, H., Harkey, D. W., and Gutsman, M. R. (2004) A continuous process for the glycerolysis of soybean oil. J. Am. Oil Chem. Soc. 81, 203-207. https://doi.org/10.1007/s11746-004-0882-y
  25. Pawongrat, R., Xu, X. B., and H-Kittikun, A. (2007) Synthesis of monoacylglycerol rich in polyunsaturated fatty acids from tuna oil with immobilized lipase AK. Food Chem.104, 251-258. https://doi.org/10.1016/j.foodchem.2006.11.036
  26. Rosu, R., Yasui, M., Iwasaki, Y., and Yamane, T. (1999) Enzymatic synthesis of symmetrical 1,3-diacylglycerols by direct esterification of glycerol in solvent free system. J. Am. Oil Chem. Soc. 76, 839-843. https://doi.org/10.1007/s11746-999-0074-7
  27. Singh, A. K. and Mukhopadhyay, M. (2012) Olive oil glycerolysis with the immobilized lipase Candida Antarctica in a solvent free system. Grasas Aceites 63, 202-208. https://doi.org/10.3989/gya.094811
  28. Stojanovic, M. J., Velickovic, D., Dimitrijevic, A., Milosavic, N., Knezevic-Jugovic, Z., and Bezbradica, D. (2013) Lipase-catalyzed synthesis of ascorbyl oleate in acetone: Optimization of reaction conditions and lipase reusability. J. Oleo. Sci. 62, 591-603. https://doi.org/10.5650/jos.62.591
  29. Tada, N., Watanabe, H., Matsuo, N., Tokimitsu, I., and Okazaki, M. (2001) Dynamics of postprandial remnant-like lipoprotein particles in serum after loading of diacylglycerols. Clin. Chim. Acta. 311, 109-117. https://doi.org/10.1016/S0009-8981(01)00583-6
  30. Taguchi, H., Watanabe, H., Onizawa, K., Nagao, T., Gotoh, N., Yasukawa, T., Tsushima, R., Shimasaki, H., and Itakura, H. (2000) Double-blind controlled study on the effects of dietary diacylglycerol on postprandial serum and chylomicron triacylglycerol responses in healthy humans. J. Am. Coll. Nutr. 19, 789-796. https://doi.org/10.1080/07315724.2000.10718079
  31. Toscano, G., Riva, G., Foppa Pedretti, E., and Duca, D. (2012) Vegetable oil and fat viscosity forecast models based on iodine number and saponification number. Biomass Bioenerg. 46, 511-516. https://doi.org/10.1016/j.biombioe.2012.07.009
  32. Wang, L. L., Wang, Y., Hu, C. Y., Cao, Q., Yang, X. H., and Zhao, M. M. (2011). Preparation of diacylglycerol-enriched oil from free fatty acids using lecitase ultra-catalyzed esterification. J. Oil Fat Ind. 88, 1557-1565.
  33. Wang, W. F., Li, T., Ning, Z. X., Wang, Y. H., Yang, B., and Yang, X. Q. (2011) Production of extremely pure diacylglycerol from soybean oil by lipase-catalyzed glycerolysis. Enzyme Microb. Tech. 49, 192-196. https://doi.org/10.1016/j.enzmictec.2011.05.001
  34. Wang, Y., Zhao, M. M., OU, S. Y., Xie, L.Y., and Tang, S. Z. (2009) Preparation of a diacylglycerol-enriched soybean oil by phosphalipase A1 catalyzed hydrolysis. J. Mol. Catal. BEnzym. 56,165-172. https://doi.org/10.1016/j.molcatb.2008.07.008
  35. Xu, X., Mu, H., Skands, A. R. H., Hoy, C. E., and Adler-Nissen, J. (1999) Parameters affecting diacylglycerol formation during the production of specific-structured lipids by lipase-catalyzed interesterification. J. Am. Oil Chem. Soc. 76, 175-181. https://doi.org/10.1007/s11746-999-0215-z
  36. Zhong, N. J., Li, L., Xu, X. B., Cheong, L. Z., Zhao, X. H., and Li, B. (2010) Production of diacylglycerols through low-temperature chemical glycerolysis. Food Chem. 122, 228-232. https://doi.org/10.1016/j.foodchem.2010.02.067

Cited by

  1. Ultrasonic pretreatment promotes diacylglycerol production from lard by lipase-catalysed glycerolysis and its physicochemical properties vol.48, pp.None, 2017, https://doi.org/10.1016/j.ultsonch.2018.05.005
  2. Novozym 435: the “perfect” lipase immobilized biocatalyst? vol.9, pp.10, 2019, https://doi.org/10.1039/c9cy00415g
  3. Kinetics and Mechanism of Solvent Influence on the Lipase-Catalyzed 1,3-Diolein Synthesis vol.5, pp.38, 2017, https://doi.org/10.1021/acsomega.0c03284
  4. In vitro digestion of emulsified lard‐based diacylglycerols vol.101, pp.8, 2017, https://doi.org/10.1002/jsfa.10968