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Abstract 
Fuzzy co-clustering is sensitive to noise data. To overcome this noise sensitivity defect, possibilistic clustering 
relaxes the constraints in FCM-type fuzzy (co-)clustering. In this paper, we introduce a new possibilistic fuzzy 
co-clustering algorithm based on information bottleneck (ibPFCC). This algorithm combines fuzzy co-
clustering and possibilistic clustering, and formulates an objective function which includes a distance function 
that employs information bottleneck theory to measure the distance between feature data point and feature 
cluster centroid. Many experiments were conducted on three datasets and one artificial dataset. Experimental 
results show that ibPFCC is better than such prominent fuzzy (co-)clustering algorithms as FCM, FCCM, 
RFCC and FCCI, in terms of accuracy and robustness. 
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1. Introduction 

In order to keep up with the tremendous growth of information, many data mining techniques, 
aiming at revealing and visualizing structure of data, were studied and used to help end users find the 
information they required. One of these techniques is clustering, which tries to identify clusters that 
exhibit high intra-cluster similarity and low inter-cluster similarity [1,2]. 

Any clustering technique relies on two crucial components: a clustering algorithm and a similarity 
measure [1]. To introduce a clustering algorithm in detail, let us consider a set of N objects, denoted by 

1 2
{ , , , }

K

N
X x x x= ⊂L R , where each object is a numerical feature vector that describes the objects’ 
attributes, and K is the dimension of the feature space. Clustering tries to partition X into C (1<C<N) 
subgroups such that each subgroup represents “natural” substructure in X [3]. There are three main 
types of clustering algorithms according to different division standards: crisp clustering, fuzzy 
clustering and possibilistic clustering [4]. Crisp clustering is, in actuality, hard clustering, that puts each 
object into a single cluster. Let uci be the membership of object xi in cluster c, and the partition element 
will equal 1 if xi belongs to c and equal 0 otherwise. In other words, the value of uci can only be 0 or 1. 

Different from crisp clustering, fuzzy clustering allows an object to belong to more than one cluster 
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[5-7]. Here the uci is usually interpreted as a probability p(c|xi) that xi is in the i-th class. Therefore, the 
range of uci is extended from {0, 1} in crisp clustering to [0, 1]. On uci, there is an important constraint, 

1
cic
u =∑ , which ensures that every object is involved in each cluster. Because the indisputable fact is 

that any data object may involve multiple topics, fuzzy clustering is more realistic than crisp clustering. 
Fuzzy C-means (FCM) [8], known as the fuzzy version of the K-means algorithm, is a representative 
fuzzy clustering algorithm. In FCM, the affiliations of objects to clusters are represented by 
memberships. Fuzzy co-clustering extends fuzzy clustering by assigning both objects and features 
membership functions. It filters out relevant features during the computation of object membership 
function and thus solves the problem of sparseness of data by reducing the dimensionality [9]. The co-
clustering algorithm is thus suited to Web applications with high dimensions. At present popular fuzzy 
co-clustering algorithms include fuzzy clustering for categorical multivariate data (FCCM) [10], robust 
fuzzy co-clustering (RFCC) [11] and fuzzy co-clustering algorithm for images (FCCI) [9], etc. However, 
fuzzy co-clustering algorithms also apply the constraint that the memberships of each object across 
groups sum to 1 [12]. Due to this constraint, fuzzy co-clustering has considerable trouble in handling 
outliers in a data set. 

To address this problem, possibilistic clustering relaxes the constraint, and the sum of each column 

satisfies the looser constraint, 
0

ci
c

Cu< ≤∑ . That is, the value of uci can be any number between 0 and 
1. Krishnapuram and Keller [13] proposed the well-known possibilistic c-means clustering algorithm 
(PCM), and suggested that the uci should be interpreted as the typicality of xi relative to cluster c rather 
than membership. Because of the looser constraint, PCM is not as sensitive to outlier as FCM. However, 
PCM is very sensitive to data initializations and sometimes generates coincident clusters [14]. Pal et al. 
[3] proposed a fuzzy possibilistic c-means clustering algorithm (FPCM), which possess the good 
features of both FCM and PCM, while eliminating some of their bad features. 

Besides a clustering algorithm mentioned above, a similarity measure is also an important component 
of a clustering technique. There exist many similarity measures, such as the Cosine measure, the Dice 
measure, the Jaccard measure, the overlap measure and the information-theoretic measure [15]. We all 
know that selecting a similarity measure to evaluate similarities of objects has a significant impact on 
clustering and final results [16]. However, the choice of similarity measures has no clear uniform 
standards, and too often this is an arbitrary choice, which may significantly affect the clustering 
accuracy. Slonim and Tishby [17] introduced information bottleneck into clustering. Different from 
common similarity measures, the information bottleneck based clustering algorithms group objects by 
calculating mutual information loss when merging objects into a cluster. The results [17,18] showed 
that their algorithms perform much better. 

Currently, the Web is the largest information repository. The huge size motivates us to present a new 
clustering algorithm that could easily deal with large-scale and high-dimensional data and provide high 
clustering quality. Fuzzy co-clustering can group high-dimensional sparse data by reducing data 
dimensionality. And its noise sensitivity defect could be overcome by possibilistic clustering which 
relaxes the constraint in FCM-type fuzzy clustering. Further, we believe that information bottleneck 
based similarity measure could help to improve clustering accuracy. 

Therefore, in this paper, we propose a new possibilistic fuzzy co-clustering algorithm based on 
information bottleneck (ibPFCC). This algorithm integrates possibilistic clustering, fuzzy clustering and 
co-clustering, and strives to keep their benefits. Furthermore, it introduces information bottleneck 
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based similarity measure into its objective function, which could help to reduce the subjective error 
caused by arbitrary choice on similarity measures and improve clustering quality. 

The remainder of this paper is organized as follows. In Section 2, we provide a literature review of 
fuzzy co-clustering, possibilistic clustering and information bottleneck theory. Section 3 introduces in 
detail the proposed algorithm, ibPFCC. In Section 4, some experiments are performed and experimental 
results are discussed. Finally, we conclude our work. 

 
 

2. Related Work 

In this section, we briefly review some related clustering algorithms, including fuzzy co-clustering, 
possibilistic clustering, and information bottleneck theory. This review section can help to understand 
our algorithm introduced in the next section. The explanations on the mathematical notations used in 
this paper are listed in Table 1. 

 
Table 1. List of mathematical notations 

Notation Description 

C,N,K Numbers of clusters, documents, and words 

uci Document partitioning membership 

vcj Word ranking membership 

tci Document typicality membership 

Tu, Tv, Tt User-defined membership parameters 

Dist(…,…) Distance function 

pcj Feature cluster centroid 

Dcij Distance between feature point xij and feature cluster centroid pcj 

xi Data point 

pc Cluster centroid 

τ Number of iterations 

τmax Maximum number of iterations  

ε Convergence indicator parameter 

λi, γc, βc Lagrange multipliers 
 
 

2.1 Fuzzy Co-clustering 
 

Most of classic clustering algorithms belong to crisp clustering, where the memberships are all equal 
to 0 or 1. Fuzzy clustering is more flexible than crisp clustering because it allows each object belong to 
more than one cluster [4]. 

FCM is the most influential fuzzy clustering algorithm, which adds fuzzy theory into K-means 
clustering. Different from the crisp K-means, in FCM, the objective function is extended from crisp 
partition to fuzzy partition, and the distance between the objects and the cluster centers is weighted by 
the membership degree. However, FCM, after all, is a one-dimensional clustering algorithm, which only 
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considers the correlation between objects and neglects the correlation between features. In 2001, Oh et 
al. [10] extended FCM from one-dimensional to two-dimensional, and proposed a fuzzy co-clustering 
algorithm, FCCM. In FCCM, both objects and features are assigned membership functions, and 
documents and words are grouped simultaneously. Besides FCCM, The FCCI [9] is also a fuzzy co-
clustering algorithm, whose objective function includes a multi-dimensional distance function as the 
dissimilarity measure and the entropy as the regularization term. The objective function of FCCI is 
given as Eq. (1), which is required to be minimized subject to the membership constraints in Eqs. (2) 
and (3). 

 

 

1 1 1 1 1

1 1

( , , ) log

log

C N K C N

FCCI ci cj cij u ci ci

c i j c i

C K

v cj cj

c j

J U V P u v D T u u

T v v

= = = = =

= =

= +

+

∑∑∑ ∑∑

∑∑

                                          (1) 

 

 
1

1, [0,1], 1,
C

ci ci

c

u u i N

=

= ∈ ∀ =∑ K                                                             (2) 

 

 
1

1, [0,1], 1,
K

cj cj

j

v v c C

=

= ∈ ∀ =∑ K                                                              (3) 

 
The first term in Eq. (1) denotes the effective squared distance. The uci denotes the object 

membership of the i-th data object to cluster c, and the vcj is the feature membership defined as the 
membership of the j-th feature to the c-th cluster. The Dcij is the square of the Euclidean distance 
between feature data point xij and the feature cluster centroid pcj. In order to minimize this term, it is 
necessary to assign higher membership values to the objects nearer to cluster centers, and higher 
weights to the features that are more relevant. The second and third terms try to maximize the fuzzy 

entropies 
1 1

log
C N

ci cic i
u u

= =

−∑ ∑  and 
1 1

log
C K

cj cjc j
v v

= =

−∑ ∑ . The Tu and Tv control the degrees of 

partition fuzziness respectively, and the larger the values the fuzzier the partition. 
Eq. (1) can be minimized by alternatively updating the following membership equations until 

convergence is achieved: 
 

 1

1 1

{ / }

{ / }

K

cj cijj

ci C K

cj cijc j

exp v D Tu
u

exp v D Tu

=

= =

−

=

−

∑

∑ ∑
                                                          (4) 
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2.2 Possibilistic Clustering 
 

In FCM-type clustering, for each object, the sum of the membership degrees in the clusters must be 
equal to 1 [10]. Because of this constraint, fuzzy clustering may cause some meaningless clustering 
results, especially when noise is present. Fig. 1 illustrates the limitation. 

 

 
Fig. 1. Limitation of FCM-type algorithms. 

 
Suppose there are two clusters c1 and c2, and two objects p and q that are both equidistant from cluster 

centers. The membership values of p and q in each cluster will be all equal to 0.5, which contradicts our 
intuition. We intuitively think that the object q should have higher membership value than the object p, 
because q is physically much closer to the two clusters than p, although these two objects are right in the 
middle of the two clusters. It should be evident that the constraints in FCM-type clustering only attach 
importance to the values of membership, and disregard the absolute distance value of each object from 
two centroids. Therefore, if there are noisy objects, fuzzy clustering will struggle to provide high quality 
clustering results. 

In 1993, Krishnapuram and Keller [13] proposed the PCM algorithm. After that, much research work 
on PCM was conducted, because PCM could address the drawbacks associated with the constrained 
memberships used in FCM and be especially effective when there are outliers. Recently, there is more 
and more work that combines fuzzy clustering and possibilistic clustering. Pal et al. [3] proposed a new 
model called fuzzy-possibilistic c-means (FPCM), which simultaneously produces both memberships 
and possibilities, along with the usual point prototypes or cluster centers for each cluster. The FPCM 
solves the noise sensitivity defect of FCM, and also overcomes the coincident clusters problem of PCM. 
Abidi and Yahia [19] introduced a fuzzy possibilistic clustering algorithm, called PFKCN, based on 
neural network. This algorithm introduces both membership and typicality values, simultaneously, into 
the Kohonen Network clustering. Duraisamy and Haridass [20] developed a modified fuzzy possibilistic 
clustering algorithm based on FPCM to obtain better quality clustering results. 

In this section, FPCM, the classic fuzzy possibilistic clustering algorithm, will be introduced. This 
approach tries to minimize the following objective function: 

 

 ( )
1 1

( , )
C N

m

FPCM ci ci i c

c i

J u t Dist x p
η

= =

= +∑∑                                            (7) 

 
In order to explain the typical degree of partitioning memberships, FPCM relaxes the restriction of 

partitioning memberships by introducing object typicality membership tci. This membership tci 
measures the typicality between the i-th object and the cluster c, relative to the similarities between all 

C1 C2

p

q



A Mixed Co-clustering Algorithm Based on Information Bottleneck 

 

1472 | J Inf Process Syst, Vol.13, No.6, pp.1467~1486, December 2017 

the other objects and the cluster c. The two parameters, m and η, are used to control the degree of 
fuzziness of partition respectively. When we minimize the objective function of the FPCM, two 
constraints, listed as the Eq. (2) and Eq. (8), are required to be satisfied. 

 

 

1

1, [0,1], 1,
N

ci ci

i

t t c C

=

= ∈ ∀ =∑ K
                                                (8) 

 
If Dist(xi, pc) is the squared Euclidean norm, the minimization of Eq. (7) can be solved by alternatively 

updating Eqs. (9) to (11) until the convergence is achieved: 
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2.3 Information Bottleneck Theory 
 

Information bottleneck theory [11] originated from Shannon's information theory. Given joint 
probability distribution P(X, Y), we try to search for a compact representation of X, under the condition 
of preserving the maximum information of Y. Thus, the information that X contains about Y is 
squeezed through a compact “bottleneck”. In the past few years, information bottleneck theory has been 
frequently used in clustering. The desired clustering is the one that minimizes the loss of mutual 
information between the objects and the features extracted from them [21]. At the beginning of 
clustering, each object is regarded as a cluster. In the subsequent steps, some adjacent clusters need to 
be merged. And the merge process will produce mutual information loss. In order to minimize the 
mutual information loss in the whole clustering process, a greedy agglomeration manner is usually 
adopted, which merges two clusters that cause the minimal mutual information loss in each step. 

The loss of mutual information of two clusters, cx and cy, is denoted as D(cx, cy) and calculated based 
on information theory as, 
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where I(Cbefore,Y) and I(Cafter,Y) are the mutual information between the cluster and the feature space 
before and after the cluster merging two clusters cx and cy, respectively. 

The loss of mutual information between the feature data point xij and the feature cluster centroid pcj is 
given by. 

 

 

| | | |
log log

ij cji c

cij ij cj

x px c
D x p

N t N t
= +                                       (13) 

 
where | | / | | | | / | |

i ij i c c cj i c
t x x x c c p x c= ∗ + ∗U U , N represents the total number of objects, |·| is the 

number of objects in the cluster, and xi∪cc is the cluster merging the data xi and the cluster cc, whose 
centroids are denoted as xi and pc respectively. 

Information bottleneck based clustering shows much better clustering quality than conventional 
clustering algorithms [17,18,21,22]. Many clustering experiments show that information bottleneck 
based similarity measure, which use joint probability model and mutual information, can better 
represent the correlation between objects and features. Slonim and Tishby [17] proposed an agglomerative 
hierarchical clustering algorithm based on information bottleneck theory, AIB. Experimental results 
show that the AIB algorithm based on information bottleneck is very effective. The average performance 
over all datasets attained 0.55 accuracy, while the second best result was only 0.47 accuracy. 

 
 

3. The ibPFCC Algorithm 

Co-clustering can offer several benefits [23] including (1) dimensionality reduction, (2) interpretable 
document cluster, and (3) improvement in accuracy due to local model on clustering. Fuzzy co-
clustering extends co-clustering by adding fuzzy sets theory, and could generate co-clusters that are 
more realistic [2]. Fuzzy co-clustering is prone to achieve better performance than standard clustering. 
However, this technique usually suffers from the presence of outliers. The root of the problem lies in the 
membership constraint. Possibilistic clustering overcomes this problem by relaxing this constraint. 
Besides, since the similarity measure is very crucial to clustering, it is inappropriate to select a similarity 
measure arbitrarily. Information bottleneck theory keeps as much as information in clustering, and 
proves to be able to achieve higher clustering quality. Therefore, in this paper, we propose an information 
bottleneck based Possibilistic Fuzzy Co-Clustering algorithm, called ibPFCC. This algorithm will have 
the following advantages: 

� It is a hybrid of fuzzy clustering and possibilistic clustering. 
� It could minimize the impact of outliers to improve the accuracy of co-clustering. 
� Its objective function contains the distance function based on the information bottleneck. 
� This algorithm should keep such benefits derived from fuzzy co-clustering, as dimensionality 

reduction, interpretable document cluster. 
 

3.1 The Objective Function 
 

The ibPFCC employs the distance function based on information bottleneck to measure the degree of 
correlation between objects. Its clustering process is carried out towards the direction where minimum 
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mutual information loss is generated. Therefore, the objective function of ibPFCC is designed as Eq. 
(14), which will be minimized subject to the document partitioning membership constraint as Eq. (2), 
the document typicality membership constraint as Eq. (8), and the word ranking membership 
constraint as Eq. (3). 
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The objective function has three types of membership: the document possibilistic membership uci, the 

document typicality membership tci, and the word ranking membership vcj. The first term of Eq. (14) is 
degree of aggregation which originates, but is different from FPCM. It is evident that this term contains 
both membership and typicality values for each object across all the clusters. Dcij is the amount of 
mutual information loss calculated by Eq. (13). The three remaining terms are nonlinear regularization 
terms which are downward convex functions, making uci, tci and vcj to be fuzzy. The Tu，Tv and Tt adjust 
the degree of fuzziness in clustering, and the larger these parameters, the fuzzier the partition. 

The constraint in Eq. (8) is different from the mathematical representations of fuzzy clustering. This 

constraint does not require each column to sum to 1, 
1

1
C

cic
t

=

=∑ , but each row to sum to 1, 

1
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= ∈∑ , which means 
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ci cj cijc i j
t v D

= = =

∗∑ ∑ ∑  in the objective function is a possibilistic term. 

This term can distribute the possibility values with respect to all N objects, but not to all C clusters. 
 

3.2 The Update Equations 
 

The constrained optimization of ibPFCC can be solved by applying the Lagrange multipliers λ, γ and 
β to constraints in Eqs. (2), (3) and (8) respectively. 
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where λi, γc and βc are Lagrange multipliers for constraints in Eqs. (2), (3) and (8) respectively, the 
necessary conditions for the optimal solution of the Lagrange multiplier method. Taking the partial 
derivative of objective function in Eq. (15) with respect to uci, tci and vcj and setting the gradient to zero, 
and then we have, 
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Subjecting uci derived from Eq. (16) to the constraint in Eq. (2) the formula for computing uci reduces 

to, 
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Applying the constraint in Eq. (8) to tci derived from Eq. (17), we obtain the formula for tci as. 
 

 

1

1

( )

( )

1

K
cj cij

uj

K
cj cfj

uj

v D

T

ci v D
N

T

f

e
t

e

=

=

−

−

=

∑

=
∑

∑

                                                         (20) 

 
In a similar manner, applying the constraint in Eq. (3) to vcj derived from Eq. (18), we obtain the 

formula for vcj as. 
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Note that when considering distance of information bottleneck as the distance function in Eq. (14), 

the cluster center is difficult to be expressed directly by the formula. In this paper, we present a new 
algorithm that directly calculates cluster centroids by employing a weighted averaging method based on 
uci, tci and xij , since pcj means feature cluster centroid. The algorithm is given in Table 2. 

The objective function in Eq. (14) can be minimized by alternatively updating the above membership 
equations until convergence is achieved. The ibPFCC can be written as Table 3. 

Because each iteration needs to update all memberships, the time complexity of ibPFCC is O(CNKτ), 
which is equivalent to such fuzzy co-clustering algorithms as FCCM and FCCI, where τ denotes the 
number of iterations. We can prove that the ibPFCC algorithm could converge to a local minimum of 
the optimization, and the detailed proof procedure can be found in Appendix 1. 
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Table 2. Calculating cluster centers 

Algorithm: Calculating the values of pcj 

Input: C, N, K 

Output: the cluster center 

Method: 

for c = 1,2,……C do 

    for j = 1,2……K do 

fractions=0; 

numerator=0; 

for i=1,2……N do 

    fractions = fractions + (uci+tci)*xij; 

    numerator = numerator + (uci+tci); 

end 

pcj = fractions/numerator; 

    end 

end 

 

Table 3. Pseudo-code of ibPFCC algorithm 

Algorithm: ibPFCC 

Input: C, N, K, ε, τmax  

Output: fuzzy object partitioning membership 

Method: 

Set parameter Tu, Tt, Tv; 

Set iteration number τ=0; 

Randomly initialize uci and tci, such that 0≤uci≤1, 0≤tci≤1; 

REPEAT 

Calculate pcj using the algorithm as Table 2; 

Calculate Dcij using Eq. (13); 

Calculate vcj using Eq. (21); 

Calculate uci using Eq. (19); 

Calculate tci using Eq. (20); 

τ=τ+1; 

UNTIL max|uci(τ)-uci(τ-1)|≤ε or τ=τmax 

 
 

4. Experiments 

In order to test the effectiveness of ibPFCC, we carried out a set of experiments on several document 
data sets. Experimental results are compared with four well received approaches in the literature, FCM, 
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FCCI, RFCC and PFCC (Possibilistic fuzzy co-clustering of large document collections). We choose 
four standard clustering datasets to evaluate the performance of ibPFCC, 20NewsGroups, Ohsumed, 
UW-CAN, and Reuters-21578. The details of these datasets in our experiments are given as Table 4.  

 
Table 4. List of datasets 

Database # docs # words Categories 

NG (20NewsGroups) 500 500 4 

OH (Ohsumed) 1,000 500 5 

UC (UW-CAN) 314 2,000 10 

RT (Reuters-21578) 2,315 2,000 10 
 
 

4.1 Experimental Setup 
 

The 20NewsGroups dataset is a collection of approximately 20,000 newsgroup documents, partitioned 
(nearly) evenly across 20 different newsgroups, and has become a popular data set for experiments in 
text applications of machine learning techniques, such as text classification and text clustering. 

The Ohsumed dataset is a subset of the MEDLINE database, which includes medical abstracts from 
the MeSH categories of the year 1991. The specific task was to categorize the 23 diseases categories 
identified from C01 to C23. The 3 subsets come from the first 20,000 abstracts that are about 
cardiovascular diseases. 

The UW-CAN dataset contains 314 web pages that have been taken from the University of Waterloo 
and various Canadian web sites. The pages are pre-classified into 10 different categories/classes. We use 
this existing classification as our baseline on how the dataset should be clustered. 

The Reuters-21578 dataset is a collection of documents that appeared on Reuter newswire in 1987. 
The documents were assembled and indexed with categories. 

In our experiments, the maximum number of iterations τmax = 50 and the maximum error limit ε = 
0.0001. Each algorithm is implemented on each dataset for 10 times, and the average accuracy is 
recorded as the final experimental result. Because of the different data sets, the optimal parameter 
values of each algorithm are also different. In FCM, the parameter m equals 1.2, 1.5, 1.4 and 1.5 on the 
datasets, NG, OH, UC and RT, respectively. There are two parameters in FCCI, Tu and Tv. The Tu is 0.1, 
5.0, 1.0E-6 and 1.0E-6, and the Tv is 0.1, 1.0E+7, 1.0E-2 and 1.0E-2, on the four datasets, respectively. 
The RFCC and PFCC both have three parameters. In RFCC, the first parameter is Tu, which equals 
1.0E-4, 1.0, 0.1 and 0.1 respectively; the second parameter is Tv, which equals 1.0E+7, 1.0E+4, 1.0E+6 
and 1.0E+6 respectively; and Tx is the third parameter, which equals 1.0E+3, 1.0E-3, 1.0E+4 and 1.0E-3 
respectively. In PFCC, the three parameters are Tu, Tv and Tw. On the four datasets, the values of the Tu 
are 5.0E-8, 5.0E-8, 1.0E+5 and 1.0E+7, the values of the Tv are 1.0E+4, 1.0E-4, 1.0E-3 and 0.01, and the 
values of Tw are 1.0E+5, 1.0E-4, 1.0E+4 and 1.0E+4, respectively. Our algorithm, ibPFCC, has also three 
parameters, Tu, Tt and Tv. In our experiments, these three parameters remains constant on the four 
datasets, whose values are 1.0E-8, 1.0 and 1.0, respectively. 
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4.2 Evaluation Measures 
 

Currently there are many clustering evaluation functions, including Entropy, F-Measure, purity, 
Similarity Overall and so on. In this paper, to evaluate the clustering quality of ibPFCC, we choose two 
evaluation criteria, F-Measure and Entropy, which are frequently used in clustering. 

F-Measure is the harmonic average of precision and recall, which is always to evaluating cluster 
quality. The larger the value, the better the clustering performance, and vice versa. The F-Measure of a 
cluster c and a standard class i is given by, 

 

 2 ( , ) ( , )
( , )

( , ) ( , )

P c i R c i
F c i

P c i R c i
=

+

                                                   (22) 

 

where P(c,i) and R(c,i) are the precision and recall between the cluster c and the standard class i 
respectively, 
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where Nci is the number of members of the class i in the cluster c, Nc is the number of members of the 
cluster c, and Ni is the number of members of the class i. 

The overall F-Measure for the clustering results is the weighted average of the F-Measure of each class i, 
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The Entropy is contrary to F-Measure, and the lower the value, the better the clustering quality. The 

formula of Entropy of the cluster c is calculated as, 
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The total Entropy of the clustering result is calculated as the sum of Entropies of each cluster weighted 
by the size of that cluster, 
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where N denotes the total number of documents. 
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4.3 Experimental Results 
 

The ibPFCC aims at minimizing the objective function in Eq. (14), and thus it is a prerequisite to 
converge to a local minimum. Although in Appendix 1 of this paper, rigorous theoretical proof of the 
convergence for ibPFCC is provided, we inspect the real value of objective function in our experiments 
before discussing the performance comparisons. Fig. 2 illustrates the objective function value changes 
of ibPFCC on the four datasets, NG, OH, UC and RT. It is evident that if we choose different data sets, 
the value will be in the different interval. However anyway, with the iteration times increasing, the value 
of objective function decreases gradually. When the iteration time exceeding 10 (even 5), the value has 
reached a plateau. It shows that ibPFCC has a rapid constringency speed of approaching local 
minimum, which can significantly improve the efficiency of clustering. 

Clustering accuracy is one of the most important indicators to measure clustering algorithms. The 
results illustrated in Fig. 3(a), (b), (c) and (d) show comparisons on the clustering quality on the four 
datasets, NG, OH, UC and RT, respectively. In Fig. 3(a) on the first data set, the percentage of 
improvement ranges from 7.9 (against PFCC) to 44.7 (against FCM) percent increase in the F-measure 
quality, and 2.6 (against PFCC) to 20.8 (against RFCC) percent drop in Entropy (lower is better for 
Entropy). Fig. 3(b) shows the clustering results on the OH dataset. Our ibPFCC achieves the highest F-
Measure, 0.35, and the lowest Entropy, 0.64. Although the improvement is slight, clustering accuracy is 
still the highest. Experimental results on the UC dataset are illustrated as Fig. 3(c). On this dataset, the 
ibPFCC and FCCI get much higher F-Measure and lower Entropy than the counterparts, which shows 
that clustering accuracies of these two algorithms are much higher on the dataset. Further, an 
improvement is achieved by our ibPFCC, reaching 2.5 percent in terms of F-Measure and 31 percent in 
terms of Entropy, over FCCI. For the last data set (Fig. 3(d)), the improvement is very significant. In 
terms of F-Measure, the improvement reaches 33.3%, 25.9%, 11.5% and 3.0% over FCM, FCCI, RFCC 
and PFCC, respectively. And the improvement in terms of Entropy also reaches 51.5%, 50.0%, 52.2% 
and 52.2% over FCM, FCCI, RFCC and PFCC, respectively. 

 

 

Fig. 2. Objective function values during optimization. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. Quality of clustering comparison in terms of F-Measure and Entropy. (a) NG, (b) OH, (c) UC, 
and (d) RT. 

 
Fig. 3 shows the achieved improvement in comparison with the other approaches. This could be 

attributed to the combination of fuzzy clustering and possibilistic clustering, and the similarity measure 
based on information bottleneck. 

Because ibPFCC absorbs advantages of possibilistic clustering, it should achieve strong capability of 
overcoming noise sensitivity defect. To confirm this and further enrich the discussions, we conduct 
more experiments where a new artificial dataset is constructed. The dataset involves two well-separated 
clusters of nine points each. As shown in Fig. 4(a), the three algorithms, FCM, FCCI and ibPFCC, 
generate the same final crisp partition, and essentially have the same cluster centers as in Table 5. Note 
that the RFCC and PFCC have no updating formulae of cluster centers, and thus does not participate in 
this group of experiments, because cluster center will be an important indicator to measure the 
robustness. Fig. 4(b) and (c) show the final crisp partitions obtained from the FCM and the FCCI and 
ibPFCC algorithms, respectively, after two noise objects are added into the dataset. And the 
membership values of these three algorithms are shown in Table 6. The FCM algorithm gives 
approximately equal membership of 0.5 in both clusters for the noise points (as the first two rows in 
Table 6). And the clustering results of FCM is illustrated as Fig. 4(b), where the two outliers are put into 
one cluster. Because two outliers infiltrate into clusters, the clustering quality will be significantly 
affected. The most remarkable effect is that the cluster centers move from (60.0, 30.0) and (140.0, 30.0) 
to (62.3, 33.7) and (137.7, 33.7) respectively, as can be seen in Table 5. 

In FCCI, the membership case of the two outliers is similar to the FCM case, and the outliers are also 
both grouped into one cluster (as Fig. 4(b) and Table 6). Fig. 4(b) illustrates the clustering results of 
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FCCI. Also, because the two outliers are included in clustering results, the cluster centers move from 
(60.0, 30.0) and (140.0, 30.0) to (65.5, 36.5) and (134.5, 36.5) respectively (as Table 5), which will 
significantly lower the clustering accuracy. 

 

        

(a)                                                                                     (b)  
 

 

(c)  
Fig. 4. Results on a simple dataset: (a) the crisp partition without noise resulting from the FCM, FCCI 
and ibPFCC algorithms; (b) the crisp partition with noise resulting from the FCM and FCCI algorithms; 
(c) the crisp partition with noise resulting from the ibPFCC algorithm. 

 

Table 5. Cluster centers resulting from the FCM, FCCI and ibPFCC algorithms before and after the 
noise is added 

 FCM FCCI ibPFCC 

No noise (60.0, 30.0) (140.0, 30.0) (60.0, 30.0) (140.0, 30.0) (60.0, 30.0) (140.0, 30.0) 

With noise (62.3, 33.7) (137.7, 33.7) (65.5, 36.5) (134.5, 36.5) (75.2, 30.1) (124.9, 30.1) 

 

In ibPFCC, the membership values are also approximately equal to 0.5 in both clusters for the noise 
points. However, different from FCM and FCCI, the ibPFCC does not classify objects based on only the 
membership values but also the typicality values. Note that the farther away the feature vector is to the 
typical member (i.e., the prototype), the smaller the typicality [5]. In Table 6, the membership values of 
one outlier are 0.505 and 0.495 (as the first row in Table 6), and thus this noise object should be put into 
the first cluster. However, the typicality values of this outlier are both 0.003, which shows that the 
aberrant outlier is clearly the least typical point in both clusters and far away from either cluster. The 
memberships of the other outlier are 0.488 and 0.512, and it should belong to the second cluster in pure 
fuzzy clustering. The typicality values of this noise object are both 0.041, which shows : (1) like the 
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former one, the typicality of this outlier to both clusters is equal; (2) the typicality value 0.041 is greater 
than 0.003, the typicality value of the former outlier, which indicates that this outlier is much closer to 
the clusters; (3) nevertheless, the value 0.041 is much less than the typicality values of other objects in 
the second cluster, therefore, in contrast, this object is still aberrant. In ibPFCC, the original cluster 
centers are moved from (60.0, 30.0) and (140.0, 30.0) to (75.2, 30.1) and (124.9, 30.1) respectively (as 
Table 5), because we add the two noise objects into the final clusters. In fact, the ibPFCC could identify 
noise objects, and in that case, the cluster centers are virtually unchanged. Above discussion shows that 
the ibPFCC achieves stronger robust performance than such fuzzy (co-) clustering algorithms as FCM 
and FCCI. 

 
Table 6. Memberships resulting from the FCM, FCCI and ibPFCC algorithms after the noise is added 

 
FCM FCCI ibPFCC(uci) ibPFCC(tci) 

Cluster1 Cluster2 Cluster1 Cluster2 Cluster1 Cluster2 Cluster1 Cluster2 
1 0.500 0.500 0.500 0.500 0.505 0.495 0.003 0.003 
2 0.500 0.500 0.500 0.500 0.488 0.512 0.041 0.041 
3 0.994 0.006 0.959 0.041 0.866 0.134 0.055 0.014 
4 0.982 0.018 0.970 0.030 0.814 0.186 0.067 0.023 
5 0.953 0.047 0.951 0.049 0.747 0.253 0.074 0.033 
6 0.994 0.006 0.979 0.021 0.866 0.134 0.068 0.018 
7 0.982 0.018 0.997 0.003 0.813 0.187 0.083 0.029 
8 0.953 0.047 0.984 0.016 0.746 0.254 0.092 0.042 
9 0.994 0.006 0.976 0.024 0.865 0.135 0.070 0.018 

10 0.982 0.018 0.993 0.007 0.812 0.188 0.085 0.029 
11 0.953 0.047 0.979 0.021 0.745 0.255 0.094 0.043 
12 0.047 0.953 0.049 0.951 0.244 0.756 0.034 0.072 
13 0.018 0.982 0.030 0.970 0.185 0.815 0.025 0.068 
14 0.006 0.994 0.041 0.959 0.139 0.861 0.018 0.062 
15 0.047 0.953 0.016 0.984 0.243 0.757 0.042 0.089 
16 0.018 0.982 0.003 0.997 0.184 0.816 0.031 0.084 
17 0.006 0.994 0.021 0.979 0.138 0.862 0.022 0.077 
18 0.047 0.953 0.021 0.979 0.242 0.758 0.043 0.091 
19 0.018 0.982 0.007 0.993 0.184 0.816 0.031 0.086 

20 0.006 0.994 0.024 0.976 0.137 0.863 0.022 0.078 

 

 

5. Conclusion 

Fuzzy co-clustering could simultaneously group objects and features, and therefore has many 
advantages such as dimensionality reduction and interpretable document cluster that are kept from co-
clustering and fuzzy clustering. However, like FCM, fuzzy co-clustering also usually suffers from the 
inherent noise sensitivity defect, which lies in the membership constraint in FCM-type clustering. In 
this paper, we overcome this problem by combining possibilistic clustering, which relaxes the 
constraint, with fuzzy co-clustering, and propose a mixed clustering algorithm, named ibPFCC. In 
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ibPFCC, we formulate an objective function including a distance function based on information 
bottleneck as the dissimilarity measure and entropy as the regularization term. To test the effectiveness 
of ibPFCC, we implemented experiments on four standard datasets, and the experimental results show 
that the proposed algorithm outperforms such fuzzy (co-)clustering algorithms as FCM, FCCI, RFCC 
and PFCC, in terms of accuracy and robustness. 
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Appendix 1 

The proof of convergence of the ibPFCC algorithm is shown below: 
Based on the bounded monotonic principle, we know that a monotone bounded function is 

convergent. Therefore, in order to prove the convergence of ibPFCC, we need to prove that the value of 
JibPFCC never increases when we update Eqs. (19-21) and JibPFCC is a bounded function. 

 
THEOREM 1. In every iteration, the updated value of uci given by Eq. (19) never increases the value of 

the objective function JibPFCC in Eq. (14). 
Proof. We consider the objective function JibPFCC as a function of a single variable uci, denoted by J(U): 
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Similarly, the variables vcj, Dcij and tci may be considered as three constants. And then theorem 1 can be 
proven by showing that the u* (i.e., the updated value of uci given by Eq. (19)) is the local minima of the 
objective function J(U) by Lagrange multiplier method. For this we need to prove that the Hessian 
matrix △2J(u*) is positive definite.  
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At u*, uci≥0 and Tu is always assigned with a positive value. Therefore the Hessian matrix △2J(u*) is 
positive definite. In summary, u* is the objective function of stationary point ((∂J (uci)/∂uci)=0) and 
Hessian matrix △2J(u*) is positive definite. By sufficient and necessary condition for the existence of 
extreme value of multivariate function knows that the updated uci is indeed a local minima of J (U) and 
it never increases the objective function value. 

 
THEOREM 2. The updated values of tci given by Eq. (20) never increase the objective function JibPFCC in 

Eq. (14) in every iteration. 
Proof. Theorem 2 can be proven in a similar fashion as Theorem 1. 
 
THEOREM 3. At every iteration, the updated values of vcj given by Eq. (21) never increase the objective 

function JibPFCC in Eq. (14). 
Proof. Theorem 3 can be proven in a similar fashion as Theorem 1. 
 
THEOREM 4. The objective function of JibPFCC in Eq. (14) is bounded. In other words, there is a constant 

M, which makes the JibPFCC more than M all the way (i.e., JibPFCC≥M). 
Proof. Since the minimum value of uci, tci and vcj is 0, and Dcij≥0, we know that the first term of JibPFCC is 

greater than or equal to 0, that is,  
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The second, third and fourth terms of JibPFCC in Eq. (14) are all entropy regularization terms, and when 
uci=1/C, tci=1/N and vcj=1/K, the minimum value of the function will be achieved. 
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Because Tu, N, C, Tt, Tv and K are all constants, we can get that JibPFCC≥M, when 
( ) ( ) ( )* *log 1/ * *log 1/ * *log 1/

u t v
M T N C T C N T C K= + + . In summary, the objective function JibPFCC is 

bounded. 
 
COROLLARY 1. The ibPFCC algorithm converges to a local minimum of the optimization, with the 

update formulae given in Eqs. (19-21). 
Proof. This corollary is a direct consequence of the above four theorems. Theorems 1-3 indicate that 

the procedure of membership updating never increases the value of the JibPFCC. Theorem 4 states that 
there is a limit to how much this objective function can be decreased. So eventually the procedure 
should stop somewhere before or when it reaches this limit. 
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