DOI QR코드

DOI QR Code

A Review of Geochemical Factors Governing the Phase Transformation of Birnessite

버네사이트 상변화 반응의 지화학적 반응 조절인자 연구

  • Namgung, Seonyi (Department of Earth System Sciences, Yonsei University) ;
  • Chon, Chul-Min (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Giehyeon (Department of Earth System Sciences, Yonsei University)
  • 남궁선이 (연세대학교 지구시스템과학과) ;
  • 전철민 (한국지질자원연구원 지질환경연구본부) ;
  • 이기현 (연세대학교 지구시스템과학과)
  • Received : 2017.12.16
  • Accepted : 2017.12.28
  • Published : 2017.12.28

Abstract

Birnessite is one of the dominant Mn (oxyhydr)oxide phases commonly found in soil and deep ocean environments. It typically occurs as nano-sized and poorly crystalline aggregates in the natural environment. It is well known that birnessite participates in a wide variety of bio/geochemical reactions as a reactive mineral phase with structural defects, cation vacancies, and mixed valences of structural Mn. These various bio/geochemical reactions control not only the fate and transport of inorganic and organic substances in the environment, but also the formation of diverse Mn (oxyhydr)oxides through birnessite transformation. This review assessed and discussed about the phase transformation of birnessite under a wide range of environmental conditions and about the potential geochemical factors controlling the corresponding reactions in the literature. Birnessite transformation to other types of Mn (oxyhydr)oxides were affected by dissolved Mn(II), dissolved oxygen, solution pH, and co-existing cation (i.e., $Mg^{2+}$). However, there still have been many issues to be unraveled on the complex bio/geochemical processes involved in the phase transformation of birnessite. Future work on the detail mechanisms of birnessite transformation should be further investigated.

버네사이트(birnessite)는 토양 및 심해저 환경에서 가장 흔히 발견되는 주요 망간수산화물 및 망간산화물(Mn(oxyhydr)oxides, 이하 망간산화물로 통칭) 중 하나로 일반적으로 나노 크기의 작은 입자로 구성되어 있으며 결정도가 매우 낮은 특징을 보인다. 특히 버네사이트는 구조 내 결함(structural defects)과 비어있는 양이온 자리(cation vacancies), 다양한 비율로 혼합된 구조 내 망간 산화수(mixed valences of structural Mn)의 특징에 따라 자연환경에서 다양한 생/지화학적 반응에 높은 반응성을 가지고 참여하는 것으로 알려져 있다. 이와 같이 다양한 생/지화학적 반응을 통해 버네사이트 주변에 존재하는 무기 및 유기물질의 자연 환경적 거동에 중요한 영향을 미칠 뿐 아니라 버네사이트의 상변화 반응이 수반되어 물리 화학적 특성이 전혀 다른 새로운 망간산화물이 형성된다. 본 리뷰 논문에서는 기존 선행 연구결과들을 바탕으로 버네사이트의 상변화 반응을 통해 형성되는 다양한 망간산화물들을 조사하고 반응에 영향을 미치는 다양한 지화학적 반응인자들을 검토하였다. 기존 선행연구 결과에 따르면 버네사이트의 상변화 반응은 용존 Mn(II) 및 용존 산소의 유무, 용액의 pH 조건, 그리고 함께 존재하는 양이온(i.e., $Mg^{2+}$)에 영향을 받는 것으로 사료되며, 다양한 반응인자들이 복합적으로 관여하는 버네사이트의 상변화 반응 경로에 대해서는 여전히 이해되지 않은 부분이 많은 것으로 확인되었다. 따라서, 앞으로 다양한 망간산화물들의 형성과 상변화 반응에 대한 보다 다양하고 심층적인 연구가 수행되어야 할 것이다.

Keywords

References

  1. Bargar, J.R., Tebo, B.M., Bergmann, U., Webb, S.M., Glatzel, P., Chiu, V.Q. and Villalobos, M. (2005) Biotic and abiotic products of Mn(II) oxidation by spores of the marine Bacillus sp. Strain SG-1. Am. Mineral., v.90, p.143-154. https://doi.org/10.2138/am.2005.1557
  2. Davies, S.H.R. and Morgan, J.J. (1989) Manganese(II) oxidation kinetics on metal oxide surfaces. J. Colloid. Interface. Sci., v.129, p.63-77. https://doi.org/10.1016/0021-9797(89)90416-5
  3. Dick, G.J., Clement, B.G., Webb, S.M., Fodrie, F.J., Bargar, J.R. and Tebo, B.M. (2009) Enzymatic microbial Mn(II) oxidation and Mn biooxide production in the Guaymas Basin deep-sea hydrothermal plume. Geochim. Cosmochim. Acta, v.73, p.6517-6530. https://doi.org/10.1016/j.gca.2009.07.039
  4. Diem, D. and Stumm, W. (1984) Is dissolved $Mn^{2+}$ being oxidized by $O^2$ in absence of Mn-bacteria or surface catalysts?. Geochim. Cosmochim. Acta, v.48, p.1571-1573. https://doi.org/10.1016/0016-7037(84)90413-7
  5. Elzinga, E.J. (2011) Reductive transformation of birnessite by aqueous Mn(II). Environ. Sci. Technol., v.45, p.6366-6372. https://doi.org/10.1021/es2013038
  6. Fendorf, S.E., Sparks, D.L., Franz, J.A. and Camaioni, D.M. (1993) Electron paramagnetic resonance stopped-flow kinetic study of manganese(II) sorption-desorption on birnessite. Soil. Sci. Soc. Am. J., v.57, p.57-62. https://doi.org/10.2136/sssaj1993.03615995005700010011x
  7. Feng, X.H., Zhu, M., Ginder-Vogel, M., Ni, C., Parikh, S.J. and Sparks, D.L. (2010) Formation of nano-crystalline todorokite from biogenic Mn oxides. Geochim. Cosmochim. Acta, v.74, p.3232-3245. https://doi.org/10.1016/j.gca.2010.03.005
  8. Giovanoli, R. (1980) Vernadite is random-stacked birnessite. Miner. Deposita, v.15, p.251-253.
  9. Hinkle, M.A.G., Dye, K.G. and Catalano, J.G. (2017) Impact of Mn(II)-Manganese oxide reactions on Ni and Zn speciation. Environ. Sci. Technol., v.51, p.3187-3196. https://doi.org/10.1021/acs.est.6b04347
  10. Junta, J.L. and Hochella, Jr. M.F. (1994) Manganese(II) oxidation at mineral surfaces: A microscopic and spectroscopic study. Geochim. Cosmochim. Acta, v.58, p.4985-4999. https://doi.org/10.1016/0016-7037(94)90226-7
  11. Kuma, K., Usui, A., Paplawsky, W., Gedulin, B. and Arrhenius, G. (1994) Crystal structures of synthetic 7 and 10 angstrom manganates substituted by monoand divalent cations. Mineral. Mag., v.58, p.425-447. https://doi.org/10.1180/minmag.1994.058.392.08
  12. Madden, A.S. and Hochella, M.F. (2005) A test of geochemical reactivity as a function of mineral size: Manganese oxidation promoted by hematite nanoparticles. Geochim. Cosmochim. Acta, v.69, p.389-398. https://doi.org/10.1016/j.gca.2004.06.035
  13. Manceau, A., Gorshkov, A.I. and Drits, V.A. (1992) Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: Part II. Information from EXAFS spectroscopy and electron and X-ray diffraction. Am. Mineral., v.77, p.1144-1157.
  14. Mandernack, K.W., Post, J. and Tebo, B.M. (1995) Manganese mineral formation by bacterial spores of the marine Bacillus, strain SG-1: Evidence for the direct oxidation of Mn(II) to Mn(IV). Geochim. Cosmochim. Acta, v.59, p.4393-4408. https://doi.org/10.1016/0016-7037(95)00298-E
  15. Marcus, M.A., Manceau, A. and Kersten, M. (2004) Mn, Fe, Zn and As speciation in a fast-growing ferromanganese marine nodule. Geochim. Cosmochim. Acta, v.68, p.3125-3136. https://doi.org/10.1016/j.gca.2004.01.015
  16. McKenzie, R.M. (1989) Manganese oxides and hydroxides. In Minerals in Soil Environments (eds. J.B. Dixon and S.B. Weed). Soil Science Society of America, Madison, Wisconsin, p.439-465.
  17. Morgan, J.J. (2005) Kinetics of reaction between $O_2$ and Mn(II) species in aqueous solutions. Geochim. Cosmochim. Acta, v.69, p.35-48. https://doi.org/10.1016/j.gca.2004.06.013
  18. McKeown, D.A. and Post, J.E. (2001) Characterization of manganese oxide mineralogy in rock varnish and dendrites using X-ray absorption spectroscopy. Am. Mineral., v.86, p.701-713. https://doi.org/10.2138/am-2001-5-611
  19. Learman, D.R., Wankel, S.D., Webb, S.M., Martinez, N., Madden, A.S. and Hansel, C.M. (2011) Coupled bioticabiotic Mn(II) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides. Geochim. Cosmochim. Acta, v.75, p.6048-6063. https://doi.org/10.1016/j.gca.2011.07.026
  20. Lefkowitz, J.P., Rouff, A.A. and Elzinga, E.J. (2013) Influence of pH on the reductive transformation of birnessite by aqueous Mn(II). Environ. Sci. Technol., v.47, p.10364-10371. https://doi.org/10.1021/es402108d
  21. Lefkowitz, J.P. and Elzinga, E.J. (2013) Structural alteration of hexagonal birnessite by aqueous Mn(II): Impacts on Ni(II) sorption. Chem. Geol., v.466, p.524-532.
  22. Pankow, J.F. and Morgan, J.J. (1981) Kinetics for the aquatic environment. Environ. Sci. Technol., v.15, p.1306-1313. https://doi.org/10.1021/es00093a003
  23. Post, J.E. (1999) Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA, v.96, p.3447-3454. https://doi.org/10.1073/pnas.96.7.3447
  24. Santelli, C.M., Webb, S.M., Dohnalkova, A.C. and Hansel, C.M. (2011) Diversity of Mn oxides produced by Mn(II)-oxidizing fungi. Geochim. Cosmochim. Acta, v.75, p.2762-2776. https://doi.org/10.1016/j.gca.2011.02.022
  25. Saratovsky, I., Wightman, P.G., Pasten, P.A., Gaillard, J.F. and Poeppelmeier, K.R. (2006) Manganese oxides: Parallels between abiotic and biotic structures. J. Am. Chem. Soc., v.128, p.11188-11198. https://doi.org/10.1021/ja062097g
  26. Sung, W. and Morgan, J.J. (1981) Oxidative removal of Mn(II) from solution catalyzed by the ${\gamma}$-FeOOH (lepidocrocite) surface. Geochim. Cosmochim. Acta, v.45, p.2377-2383. https://doi.org/10.1016/0016-7037(81)90091-0
  27. Tebo, B.M., Bargar, J.R., Clement, B.G., Dick, G.J., Murray, K.J., Parker, R.V. and Webb, S.M. (2004) Biogenic manganese oxides: Properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci., v.32, p.287-328. https://doi.org/10.1146/annurev.earth.32.101802.120213
  28. Tebo, B.M., Johnson, H.A., McCarthy, J.K. and Templeton, A.S. (2005) Geomicrobiology of manganese(II) oxidation. Trends. Microbiol., v.13, p.421-428. https://doi.org/10.1016/j.tim.2005.07.009
  29. Tu, S. (1993) Effects of KCl on solubility and bioavailability of Mn in soil and some reactions of birnessite in the presence of some Mn compounds. Ph. D. thesis, University of Manitoba.
  30. Tu, S., Racz, G. and Goh, T.B. (1994) Transformations of synthetic birnessite as affected by pH and manganese concentration. Clay. Clay. Miner., v.42, p.321-330. https://doi.org/10.1346/CCMN.1994.0420310
  31. Villalobos, M., Toner, B., Bargar, J. and Sposito, G. (2003) Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochim. Cosmochim. Acta, v.67, p.2649-2662. https://doi.org/10.1016/S0016-7037(03)00217-5
  32. Von Langen, P., Johnson, K.S., Coale, K.H. and Elrod, V.A. (1997) Oxidation kinetics of manganese(II) in seawater at nanomolar concentrations. Geochim. Cosmochim. Acta, v.61, p.4945-4954. https://doi.org/10.1016/S0016-7037(97)00355-4
  33. Weaver, R.M. and Hochella, Jr. M.F. (2003) The reactivity of seven Mn-oxides with $Cr^{3+}{_{aq}}$: A comparative analysis of a complex, environmentally important redox reaction. Am. Mineral., v.88, p.2016-2027. https://doi.org/10.2138/am-2003-11-1246
  34. Wilson, D.E. (1980) Surface and complexation effects on the rate of Mn(II) oxidation in natural waters. Geochim. Cosmochim. Acta, v.44, p.1311-1317. https://doi.org/10.1016/0016-7037(80)90091-5