DOI QR코드

DOI QR Code

Hydrogeochemistry of Groundwater Occurring in Complex Geological Environment of Yeongdong Area, Chungbuk, Korea

충북 영동군 복합 지질지역에서 산출되는 지하수의 수리지화학적 특성

  • Moon, Sang-Ho (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 문상호 (한국지질자원연구원 지질환경연구본부 지하수생태연구센터)
  • Received : 2017.12.11
  • Accepted : 2017.12.28
  • Published : 2017.12.28

Abstract

Yeongdong area is located in the contact zone between central southeastern Ogcheon belt and Yeongnam massif, in which Cretaceous Yeongdong basin exists. Therefore, the study area has complex geological environment of various geological age and rock types such as Precambrian metamorphic rocks, age-unknown Ogcheon Supergroup, Paleozoic/Mesozoic sedimentary rocks, Mesozoic igneous rocks and Quaternary alluvial deposits. This study focuses on the link between the various geology and water type, and discussed the source of some major ions and their related water-rock interaction. For this study, the field parameters and ion concentrations for twenty alluvial/weathered and eighty bedrock aquifer wells were used. Statistical analysis indicates that there was no significant differences in groundwater quality between wet and dry seasons. Although various types were observed due to complex geology, 80 to 84 % of samples showed $Ca-HCO_3$ water type. Some wells placed in alluvial/weathered aquifers of Precambrian metamorphic and Jurassic granitic terrains showed somewhat elevated $NO_3$ and Cl concentrations. $Mg-HCO_3$ typed waters prevailed in Cretaceous Yeongdong sedimentary rocks. The deeper wells placed in bedrock aquifers showed complicated water types varying from $Ca-HCO_3$ through $Ca-Cl/SO_4/NO_3$ to $Na-HCO_3$ and Na-Cl type. Groundwater samples with $Na-HCO_3$ or Na-Cl types are generally high in F concentrations, indicating more influences of water-rock interaction within mineralized/hydrothermal alteration zone by Cretaceous porphyry or granites. This study revealed that many deep-seated aquifer had been contaminated by $NO_3$, especially prominent in Jurassic granites area. Based on molar ratios of $HCO_3/Ca$, $HCO_3/Na$, Na/Si, it can be inferred that Ca and $HCO_3$ components of most groundwater in alluvial/weathered aquifer wells were definitely related with dissolution of calcite. On the other hand, Ca and $HCO_3$ in bedrock aquifer seem to be due to dissolution of feldspar besides calcite. However, these molar ratios require other mechanism except simple weathering process causing feldspar to be broken into kaolinite. The origin of $HCO_3$ of some groundwater occurring in Cretaceous Yeongdong sedimentary rock area seems to be from dissolution of dolomite($MgCO_3$) or strontianite($SrCO_3$) as well.

영동지역은 지체구조상 옥천습곡대의 중앙 남동부와 영남육괴의 경계부에 위치하며, 이들 경계부에는 백악기 영동분지가 분포한다. 따라서, 영동지역은 선캠브리아시대 변성암부터 옥천누층군, 고생대/중생대 퇴적암, 중생대 화성암을 거쳐 신생대 제4기 충적층에 이르기까지 지질시대와 암상이 다양한 복합 지질 환경을 가진다. 이들 다양한 지질과 지하수 수질과의 연관성을 검토하였으며, 지하수 내 주요 이온 성분들의 기원 및 물-암석 반응 기작을 논의하였다. 이 연구에는 충적/풍화대 관정 20개, 암반 관정 80개를 대상으로 한 현장 수질 측정 자료와 이온 함량 분석 자료가 활용되었다. 통계 분석 결과, 풍수기와 갈수기간의 수질 변화는 크지 않은 것으로 나타났다. 지질별로 수질 유형이 다양하게 관찰되었으나, 충적/풍화대 뿐 아니라 암반 지하수에서도 $Ca-HCO_3$ 유형이 전체의 80~84 % 정도를 차지하였다. 충적/풍화대 지하수의 경우, 선캠브리아시대 변성암, 쥬라기 화강암 지역 일부에서 $NO_3$, Cl 함량이 꽤 높은 것이 관찰되었고, 백악기 영동층군 퇴적암에서는 $Mg-HCO_3$ 유형이 관찰되었다. 암반 지하수에서는 선캠브리아시대 변성암, 쥬라기 화강암 지역에서 $Ca-HCO_3$ 유형에서부터 $Ca-Cl/SO_4/NO_3$ 유형을 거쳐 $Na-HCO_3$, Na-Cl 유형까지 매우 다양한 수질 유형을 보였다. 이중 $Na-HCO_3$, Na-Cl 유형을 보이는 지하수는 F 함량이 높은 것들로서, 지하수 수질이 백악기 반암 및 화강암의 광화대 및 변질대에서의 물-암석 반응에 기인하는 것으로 추정된다. 연구지역은 심부 대수층까지 $NO_3$에 의한 오염이 심화된 것으로 나타나며, 이는 특히 쥬라기 화강암 지역에서 현저하다. 지하수의 $HCO_3$/Ca, $HCO_3$/Na, Na/Si 몰비 등으로 볼 때, 충적/풍화대 지하수의 Ca, $HCO_3$ 성분은 대부분 방해석의 용해작용과 관련되어 있는 것으로 해석된다. 암반 지하수에서는 물 속의 Ca, $HCO_3$ 성분은 방해석 이외에 사장석의 용해작용과 관련되어 있어 보이나, 사장석이 고령토로만 변하는 단순 풍화작용의 기작만으로는 설명이 어려운 수질 특성을 보였다. 백악기 영동층군 퇴적암 지역의 지하수에서는 $HCO_3$ 기원이 방해석 이외에도 $MgCO_3$, $SrCO_3$ 등의 용해작용과도 관련이 있어 보였다.

Keywords

References

  1. Chandrawanshi, C.K. and Patel, K.S. (1999) Fluoride deposition in Central India. Environmental Monitoring and Assessment, v.55, no.2, p.252-265.
  2. Choo, C.-O., Sung, I.-H., Cho, B.-W., Lee, B.-D. and Kim, T.-W. (1998) Hydrochemistry of groundwater at natural mineral water plants in the Okcheon metamorphic belt, Korea. Jour. Korean Soil Environ. Soc., v.3, no.3, p.93-107.
  3. Hong, S.H., Lee, B.J. and Kim, W.Y. (1980) Explanatory text of the geological map of Muju sheet (1:50,000). Korea Research Institute of Geoscience and Mineral Resources, 28p.
  4. Hwang, J.H., Kim, D.H., Cho, D.R. and Song, G.Y. (1996) 1:250,000 Explanatory note of the Andong Sheet. Korea Institute of Geology, Mining and Materials, 67p.
  5. Jeong, C.-H., Koh, Y.-K., Kim, S.-J. and Kim, C.-S. (1995) Hydrogeochemistry and water-rock interaction in the gneiss of the Samkwang mine area. Jour. Geol. Soc. Korea, v.31, no.2, p.91-105.
  6. Jeong, C.H., Lee, Y.J., Lee, Y.C., Kim, M.S., Kim, H.K., Kim, T.S., Jo, B.U. and Choi, H.Y. (2016) Hydrochemistry and occurrences of natural radioactive materials from groundwater in various geological environment. Jour. Eng. Geol., v.26, no.4, p.531-549. https://doi.org/10.9720/kseg.2016.4.531
  7. Kim, D.H., Chang, T.W., Kim, W.Y. and Hwang, J.H. (1978) Explanatory text of the geological map of Ogcheon sheet (Sheet 6722 IV, 1:50,000). Korea Research Institute of Geoscience and Mineral Resources, 21p.
  8. Kim, K.B. and Hwang, J.H. (1986) Geological report of the Yongdong sheet (1:50,000). Korea Institute of Energy and Resources, 24p.
  9. Kim, S.W., Yang, S.Y. and Lee, Y.J. (1989) Geological report of the Kimcheon sheet. Korea Institute of Energy and Resources, 22p.
  10. Kundu, M.C., Mandal, G. and Hazra, C. (2009) Nitrate and fluoride contamination in groundwater of an intensively manage agroecosystem: A functional relationship. Science of the Total Environment, v.407, no.8, p.2771-2782. https://doi.org/10.1016/j.scitotenv.2008.12.048
  11. Lee, B.J., Kim, D.H., Choi, H.I., Kee, W.S. and Park, K.H. (1996) 1;250,000 Explanatory note of the Daejeon Sheet. Korea Institute of Geology, Mining and Materials, 59p.
  12. Lee, D.S., You, H.S., Woo, Y.K. and Kim, Y.J. (1989) Geological report of the Oksandong sheet. Korea Institute of Energy and Resources, 24p.
  13. Lee, J.-U., Chon, H.-T. and John, Y.-W. (1997) Geochemical characteristics of deep granitic groundwater in Korea. Jour. Korean Soc. Groundwater Environ., v.4, no.4, p.199-211.
  14. Lee, J.-U., Chon, H.-T. and John, Y.-W. (1997) Geochemical characteristics of groundwater in Korea with different aquifer geology and temperature-Comparative study with granitic groundwater. Jour. Korean Soc. Groundwater Environ., v.4, no.4, p.211-222.
  15. Misra, A.K. and Mishra, A. (2007) Study of quaternary aquifers in Ganga Plain, India: Focus on groundwater salinity, fluoride and fluorosis. Journal of Hazardous Material, v.144, no.1-2, p.438-448. https://doi.org/10.1016/j.jhazmat.2006.10.057
  16. Mondal, D., Gupta, S.D., Reddy, D.V. and Nagabhushanam, P. (2014) Geochemical controls on fluoride concentrations in groundwater from alluvial aquifers of the Birbhum district, West Bengal, India. Journal of Geochemical Exploration, v.145, p.190-206. https://doi.org/10.1016/j.gexplo.2014.06.005
  17. MOLIT (Ministry of Land, Infrastructure and Transport) and KIGAM (Korea Institute of Geoscience and Mineral Resources) (2014) Basic Research of Groundwater in the Okcheon district.
  18. MOLIT (Ministry of Land, Infrastructure and Transport) and KIGAM (Korea Institute of Geoscience and Mineral Resources) (2016) Basic Research of Groundwater in the Yeongdong district.
  19. Reddy, D.V., Nagabhushanam, P., Sukhija, B.S., Reddy, A.G.S. and Smedley, P.L. (2010) Fluoride dynamics in the granitic aquifer of the Wailapally watershed. Chemical Geology, v.269, no.3-4, p.278-289. https://doi.org/10.1016/j.chemgeo.2009.10.003
  20. Sajil Kumar, P.J., Jegathambal, P., Nair, S. and James, E.J. (2015) Temperature and pH dependent geochemical modeling of fluoride mobilization in the groundwater of a crystalline aquifer in southern India. Journal of Geochemical Exploration, v.156, p.1-9. https://doi.org/10.1016/j.gexplo.2015.04.008
  21. Satsangi, G.R., Lakhani, A., Khare, P., Singh, S.P., Kumari, S.S. and Srivastava, S.S. (2002) Measurement of ion concentrations in settled coarse particles and aerosols at a semiarid rural site in India. Environment International, v.28, no.1-2, p.1-7. https://doi.org/10.1016/S0160-4120(01)00122-2
  22. Saxena, V.K. and Ahmed, S. (2003) Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environmental Geology, v.43, no.6, p.731-736. https://doi.org/10.1007/s00254-002-0672-2
  23. Singaraja, C., Chidambaram, S., Anandhan, P., et al. (2014) Geochemical evaluation of fluoride contamination groundwater in the Thoothukudi District of Tamil Nadu, India. Applied Water Science, v.4, no.3, p.241-250. https://doi.org/10.1007/s13201-014-0157-y
  24. Srinivasa Rao, N. (1977) The occurrence and behavior of fluoride in the groundwater of the Lower Vamsadhara River basin, India. Hydrological Sciences Journal, v.42, no.6, p.877-892. https://doi.org/10.1080/02626669709492085
  25. Tirumalesh, K., Shivanna, K. and Jalihal, A.A. (2007) Isotope hydrochemical approach to understand fluoride release into groundwaters of Ilkal area, Bagalkot District, Karnataka, India. Hydrogeology Journal, v.15, no.3, p.589-598. https://doi.org/10.1007/s10040-006-0107-3
  26. Tiwari, S., Chate, D.S., Bisht, D.S., Srivastava, M.K. and Padmanabhamurty, B. (2012) Rainwater chemistry in the North Western Himalayan Region, India. Atmospheric Research, v.104-105, p.128-138. https://doi.org/10.1016/j.atmosres.2011.09.006
  27. Viswanathan, G., Jaswanth, A., Gopalakrishnan, S., Sivailango, S. and Aditya, G. (2009) Determining optimal fluoride concentration in drinking water for fluoride endemic regions in South India. Science of the Total Environment, v.407, no.19, p.5298-5307. https://doi.org/10.1016/j.scitotenv.2009.06.028
  28. Youn, S.-T. and Park, H.-I. (1991) Gold and silver mineralization in the Yonghwa mine. Jour. Korean Inst. Mining Geol. (now Econ. Environ. Geol.), v.24, No.2, p.107-129.
  29. Yun, S.-T., Chae, G.-T., Koh, Y.-K., Kim, S.-R., Choi, B.-Y., Lee, B.-H. and Kim, S.-Y. (1998) Hydrogeochemical and environmental isotope study of groundwaters in the Pungki area. Jour. Korean Soc. Groundwater Environ., v.5, no.4, p.177-191.
  30. Yun, S.K. and Park, B.K. (1968) Explanatory text of the geological map of Seolcheon sheet (Sheet 6722 II, 1:50,000). Geological Survey of Korea, 15p.